
Models for test cost minimization in database migration*

ANONYMOUS AUTHOR(S)*

Database migration is a ubiquitous need faced by enterprises that generate and use vast amounts of data. This is
due to database software updates, or from changes to hardware, project standards, and other business factors [25].
Migrating a large collection of databases is a way more challenging task than migrating a single database due to
the presence of additional constraints. These constraints include capacities of shifts, and sizes of databases. In
this paper, we present a comprehensive framework that can be used to model database migration problems of
different enterprises with customized constraints, by appropriately instantiating the parameters of the framework.
These parameters are the size of each database, the size of each shift, and the cost of testing each application.
Each of these parameters can be either constant or arbitrary. Additionally, the cost of testing an application
can be proportional to the number of databases that application uses. Additionally, we examine a variant of the
problem in which all the parameters are constant, there are only two shifts, and each application calls at most
two databases. We establish the computational complexities of a number of instantiations of this framework. We
present fixed-parameter intractability results for various relevant parameters of the database migration problem.
We also provide approximability and inapproximability results as well as lower bounds for the running time
of any exact algorithm for the database migration problem. We show that the database migration problem is
equivalent to a variation of the classical Hypergraph Partitioning problem. Our theoretical results also imply new
theoretical results for the Hypergraph Partitioning problem that are interesting in their own right. Finally, we
adapt heuristic algorithms devised for the Hypergraph Partitioning problem to the database migration problem,
and give experimental results for the adapted heuristic algorithms.

CCS Concepts: • Theory of computation → Problems, reductions and completeness; • Computing method-
ologies → Planning and scheduling.

Additional Key Words and Phrases: Database Migration, Capacity constraint, Inapproximabilty, Fixed-parameter
tractability

ACM Reference Format:
Anonymous Author(s). 2022. Models for test cost minimization in database migration. ACM Trans. Datab. Syst.
1, 1 (May 2022), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Many factors drive the Big Data age. The mass deployment of sensors as part of the Internet-of-
Things (IoT) paradigm generates an enormous amount of information [20]. The adoption of video
cameras, surveillance devices, and smart appliances has given rise to data-spewing smart cities [34].
In the health-care field, billions of radiological images are produced annually that require processing
[13]. In addition to these domains, there is an ongoing wave of user-generated content. Indeed,
these disruptive technologies have begun to transform the way we store, process, and analyze data.
The resulting deluge of information has been mitigated in large part thanks to cloud computing
infrastructures that store and process the data [12].

Cloud computing has also surged in popularity among consumers in recent years. Indeed, cloud
computing leverages the availability of data centers with three main consumer services: Software-as-
a-Service (SaaS) [32], Platform-as-a-Service (PaaS) [6], and Infrastructure-as-a-Service (IaaS) [26].
In SaaS, the end-user is provided with software applications running on the cloud. PaaS provides the
platform for the user to execute his own applications. IaaS provides storage and hardware resources
through a virtual machine. These services are provided via a multitude of interconnected data servers

*Title note

2022. 0362-5915/2022/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Anon.

housed in one or more data centers. As such, their reliability, availability, and latency can be affected
by the movement of data between said servers.

The database migration problem entails the movement of data between different databases. Such
migration is often necessary due to database software updates, or from changes to hardware, project
standards, and other business factors [25]. As per established rules of software reliability, when a
database is migrated, every application that is dependent upon it must be tested (i.e., run through
regression suites [11]). It is known that testing an application is an expensive aspect of maintaining
the application [30].

While the ubiquity of computational and storage capabilities of cloud computing are undeniable,
there remain open challenges with regards to resource allocation and data management [22]. In fact,
the migration of data in data centers remains a significant problem, due to the massive throughput of
data and the limited bandwidth of communication channels [21]. This problem is further exacerbated
by the overhead incurred from retesting applications after data migration and by Quality-of-Service
(QoS) requirements, which demand minimal interruptions to end-user applications [33]. As such,
minimizing the cost associated with bandwidth-constrained database migration is of great interest.

If there are no constraints imposed on the database migration, then minimizing the application
testing cost would be a trivial task (i.e., all of the databases would be migrated at once). This means
each application would be tested only once. However, in practical situations, there are a number
of constraints which need to be met. In a typical company, all the databases cannot be migrated at
once since the databases will be inaccessible during the migration process. The company will need
a scheduling plan for the database migration operation. In the database migration operation, the
databases need to be clustered into several subsets such that the constraints are met and the databases
in the same subset are migrated together. We say that the set of databases clustered into the same
subset forms a shift of the migration schedule. When a set of databases is migrated, every application
that is dependent upon one of those databases must be tested. Consequently, the principal goal in the
migration process is to minimize the application testing cost [31].

Patil et al. [23] introduced the first systematic study on the database migration problem, and
proved that the problem is NP-hard for some special cases. They provided an integer programming
formulation, which can only be used for small instances, as well as a greedy heuristic that can
be used for the large instances of the problem. In this paper, we define a general framework that
subsumes the model in [23]. Our framework accommodates the modeling of database migration
needs of various enterprises with customized constraints. We present hardness results for all of
the models in our framework as well as fixed-parameter intractability results for various relevant
parameters. We also present approximability and inapproximability results as well as lower bounds
for the running time of any exact algorithm for the models in our framework. We discuss the
relation between our framework and the Hypergraph Partitioning (HGP) problem, and prove new
theoretical results for the HGP problem that are interesting in their own right. We also adopt heuristic
algorithms devised for the HGP problem for the models in our framework and test the performance of
these adapted heuristic algorithms on randomly generated instances. The best performing algorithm
finds solutions that are within 0.68% and 16.68% of the optimum in the average-case and worst-case,
respectively. Additionally, 63.45% of the instances are solved optimally. We also present a randomized
approximation algorithm for a simple but interesting special case of our framework.

The principal contributions of this paper are as follows:

(1) The CCDM problem is NP-hard in all models (see Section 3).
(2) The CCDM problem is NP-hard when database sizes are arbitrary, even if there is only one

application (see Section 3).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 3

(3) The CCDM problem is NP-hard when when shift sizes are arbitrary and application costs are
either constant or arbitrary, even if each application uses at most two databases (see Section 4).

(4) The CCDM2 problem cannot be solved in time 2o(n), unless the Exponential Time Hypothesis
(ETH) fails (see Section 5).

(5) A randomized (2·k−1k + ϵ)-approximation algorithm for a restricted version of the CCDM
problem where k is the number of shifts (see Section 6).

(6) APX-hardness of the CCDM problem with constant database and shift sizes, when each
application calls at most two databases implies APX-hardness of the Weighted Minimum-
Bisection problem (see Section 6).

(7) There is a relationship between certain variants of the CCDM problem and certain variants of
the HGP problem (see Section 7).

(8) An empirical study of heuristic algorithms for the CCDM problem (see Section 8).

The rest of the paper is organized as follows: In Section 2, we formally define our framework
which we refer to as the Capacity-Constrained Database Migration (CCDM) problem and introduce
the notation used in the paper. In Section 3, we study the computational complexities of all of
the models of the CCDM problem and prove that the problem is NP-hard for all of the models.
The fixed-parameter tractability of the CCDM problem with respect to four relevant parameters is
discussed in Section 4. The 2o(n) lower bound for the running time of any exact algorithm for the
CCDM problem is presented in Section 5. In Section 6, we present a randomized approximation
algorithm for a special case of the CCDM problem and show that APX-hardness of some models
of the CCDM problem implies APX-hardness for the weighted Minimum Bisection problem. In
Section 7, we discuss the relation between the CCDM problem and the HGP problem, and present
the implications of our theoretical results for the CCDM problem to the HGP problem. A detailed
implementation profile of various models of the CCDM problem on representative data is described
in Section 8. Finally, we conclude in Section 9, by summarizing our contributions and pointing out
avenues for future research.

2 THE NOTATION AND PROBLEM FORMULATION
In this section, we provide a formal definition of the framework for the CCDM problem. We
also introduce the terminology used in this paper. Assume we have a collection of m applications
A = {A1,A2, . . . ,Am} and n databases B = {B1,B2, . . . ,Bn}, with each application calling one or
more databases. The call relationship is stored in them × n matrix D = ∥di j ∥, where

di j =

{
1, if application Ai calls database Bj
0, otherwise.

The matrix D = ∥di j ∥, which represents a bipartite graph as shown in Figure 1, is part of the input.
Associated with the set of applications A is a cost-vector c = [c1, c2, . . . , cm]

T , where ci represents
the cost of testing application Ai once. For each application Ai , we let xi be an integer variable that
denotes the number of times Ai will have to be tested in the migration schedule. The size-vector
w = [w1,w2, . . . ,wn]

T represents the size of databases, with wi representing the size of Bi .
In the CCDM problem, the set of databases B is to be clustered into disjoint subsets which we

call shifts. The databases in each shift are migrated at the same time. When a shift of databases
migrates, each application that calls at least one database in that shift needs to be tested immediately.
For example, if the set of databases called by an application Ai is scheduled into 5 distinct shifts,
then application Ai needs to be tested 5 times throughout the migration process, i.e., xi = 5. The total
size of the databases that may migrate in shift i (i.e., the size of shift i) is bounded by li . The shift

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

4 Anon.

B1

B2

B3

B4

A1

A2

A3

A4

A5

A6

A7

Fig. 1. The bipartite graph shows the call relationship between the applications and the databases.
The nodes in the left partition represent the applications, while the nodes in the right partition represent
the databases in the system. An edge (Ai ,Bj) exists in the graph if application Ai calls database Bj .
This means Ai must be tested right after Bj migrates. We note that each database is associated with
a nonempty set of applications, and each application is associated with a nonempty set of databases.
This figure shows a partition of the databases into 2 shifts.

size-vector l = [l1, l2, . . . , lk]
T is also part of the input. Thus, the input to the CCDM problem must

contain the 4-tuple ⟨c,w,D, l⟩.
For instance, consider the following 4-tuple:

〈©«

1
1
1
2
2
3
3

ª®®®®®®®®®¬
,
©«
5
7
10
12

ª®®®¬ ,
©«
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 1 0 0 1 0 0
0 0 1 0 0 0 1

ª®®®¬
T

,

©«

10
15
12
7
28
34

ª®®®®®®®¬
〉

In this example, we have seven applications and four databases, since the matrix D has seven rows
and four columns. We will name the applications asA1,A2, . . . ,A7, and the databases as B1,B2,B3,B4.
Matrix D indicates which applications call which databases. We observe that database B1 is called
by applications A1,A3,A5, and A7. The database B2 is called by applications A2,A4, and A6. The
database B3 is called by applications A1,A2, and A5, and database B4 is called by applications A3,
and A7. The testing costs of applications A1,A2, . . . ,A7 are given as 1, 1, 1, 2, 2, 3, and 3, respectively,
in c. The sizes of the databases B1,B2,B3, and B4 are given as 5, 7, 10, and 12, respectively, in w. The
database migration operation in this example is to be completed in at most 6 shifts since |l| = 6 in the
input. The cumulative size of the databases that migrate in each shift is constrained by 10, 15, 12, 7, 28,
and 34, respectively, in l.

There are several parameters associated with the CCDM problem:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 5

(i) Application Testing cost (α) - The testing cost of an application depends primarily on two
factors: The time it takes to test the application, and the skills required to test a given application.
We consider the following three cost models associated with testing an application in order to
take these factors into account:

(a) Constant (const) - In this model, the cost of testing each application is the same and is equal
to some known fixed constant C. Note that this model considers the scenario in which each
application requires the same level of skills and takes roughly the same time to test.

(b) Proportional (prop) - In this model, the cost of testing an application is proportional to the
total size of the databases it calls. Note that this model considers the situation where each
application in the system requires the same level of skills, but the testing time may vary from
application to application.

(c) Arbitrary (arb) - In this model, there is no relation among the costs of testing different
applications. This model captures the problem of companies that use application software
from several different companies such that each application requires personnel with different
skill sets.

(ii) Size of Databases (β) - The size of a database is a factor in the amount of time required for
its migration. This is because the database migration operation must read the database at the
original location, write it at the new location, and then delete the original database. Consider a
bank that maintains data for credit card accounts, savings accounts, and checking accounts in
different databases. Typically, a bank will have more customers with a checking account than a
savings account. Similarly, the number of credit card customers will be significantly more than
the number of savings account customers since a typical customer has one savings account but
several credit cards. This means we need two size models associated with the databases:

(a) Constant (const) - In this model, the size of each database is the same and is equal to some
fixed constantW . This allows us to model the database migration operation for companies
whose databases have more or less the same size.

(b) Arbitrary (arb) - In this model, the sizes of the databases are arbitrary. This lets us model the
database migration operation for companies whose databases may significantly vary in size.

(iii) Shift size (γ) - During the database migration operation, some parts of the database will be
inaccessible. For some companies, there is no ideal time to make a database unavailable. For
instance, Facebook and Youtube have users all over the world which means the database access
rate is roughly uniform. In this case, regardless of when a database becomes inaccessible,
there will be a subset of users who cannot access the database until the migration is complete.
For companies (e.g., banks) that operate during regular business hours, it is favorable for the
databases to be unavailable when the companies are closed rather than when they are open. In
order to model the needs of several different companies, we use two size models associated
with the shifts:

(a) Constant (const) - In this model, the total size of the databases migrating in each shift is
bounded by a fixed constant L (i.e., l = ⟨L,L, . . . ,L⟩).

(b) Arbitrary (arb) - In this model, the bound on the total size of the databases migrating in each
shift is arbitrary.

Thus, a model of the capacity-constrained database migration problem has three parameters, and it
is specified as a triple ⟨α | β | γ ⟩. For instance, ⟨arb | const | const⟩ refers to the capacity-constrained
database migration problem in which the application testing costs are arbitrary, all databases have
the same size, and the shift sizes are uniform. For notational convenience, we use ∗ as an entry of the
triple when we present a statement that is true for all of the models for that entry. For instance, the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

6 Anon.

notation ⟨arb | ∗ | ∗⟩ refers to all 4 models of the CCDM problem in which the application testing
costs are arbitrary. The following is a formal definition of the CCDM problem:

CCDM: Given a 4-tuple ⟨c,w,D, l⟩, cluster the databases into shifts so that the total application
testing cost is minimized, while respecting the shift size constraints.

Given that we have 3 different models for application testing costs, 2 different models for databases
sizes, and 2 different models for shift sizes, the CCDM problem formulation gives us a framework
with a total of 12 different models, each of which is suitable for the database migration needs of
different companies. We use CCDM⟨α | β | γ ⟩ to refer to the set of CCDM problems that use models
captured by ⟨α | β | γ ⟩. For example, CCDM⟨const | ∗ | const⟩ is the set of CCDM problems that
use the two models captured by ⟨const | ∗ | const⟩.

We refer to the problem in CCDM⟨const | const | const⟩, with the additional constraints that there
are only two shifts and each application calls at most two databases, as the CCDM2 problem. Though
the setting of the CCDM2 problem is rather restricted, most of the hardness results for the CCDM
problem also hold for the CCDM2 problem. Thus, we will use the CCDM2 problem in our hardness
proofs for the CCDM problem.

2.1 Integer Linear Program for the CCDM problem
We now present an integer linear programming formulation for the CCDM problem. In this formu-
lation, the decision variable bjk is 1 if the database Bj is assigned to shift k and 0 otherwise. The
decision variable aik is 1 if the application Ai needs to be tested after the shift j is migrated and is 0
otherwise. The decision variable xi is the total number of times the application Ai needs to be tested.

minimize
m∑
i=1

cixi

subject to
n∑

k=1
bjk = 1, ∀j = 1,. . . ,n (1)

n∑
j=1

w j · bjk ≤ lk , ∀k = 1,. . . ,n (2)

n∑
j=1

bjk · dik ≤ Mi · aik , ∀i = 1,. . . ,m,∀k = 1,. . . ,n, (3)

n∑
k=1

aik = xi , ∀i = 1,. . . ,m (4)

bjk ∈ {0, 1}, ∀j,k = 1,. . . ,n (5)
aik ∈ {0, 1}, ∀i = 1,. . . ,m,∀k = 1,. . . ,n (6)
xi ∈ {1,. . . ,n}, ∀i = 1,. . . ,m (7)

The first set of constraints ensures that each database is assigned to a shift. The second set of
constraints enforces the shift sizes. The parameter Mi is equal to the number of databases used by
application Ai , i.e., Mi =

∑n
j=1 dik . The third set of constraints sets aik to 1 if any of the databases

used by the application Ai is assigned to the shift k. The last set of constraints counts how many
times the application Ai needs to be tested after all shifts are migrated.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 7

3 COMPUTATIONAL COMPLEXITY OF THE CCDM PROBLEM
The formulation given in [23] corresponds to the problem in CCDM⟨arb | arb | const⟩. [23] proved
that the CCDM problem is NP-hard for that model. In this section, we strengthen their hardness
result via Theorem 3.1, which states that the CCDM problem is NP-hard for all of the models in our
framework, even under the additional restrictions that there are only 2 shifts, and each application
calls at most 2 databases.

THEOREM 3.1. Each of the problems in CCDM⟨∗ | ∗ | ∗⟩ is NP-hard, even when there are only
two shifts, and each application calls at most two databases.

PROOF. Recall that CCDM⟨∗ | ∗ | ∗⟩ captures all of the models in our framework. Notice that
the CCDM2 problem trivially reduces to each of the problems in CCDM⟨∗ | ∗ | ∗⟩, under the
additional restrictions given in the theorem statement. Therefore, all we need is to show that the
CCDM2 problem is NP-hard. We will do this via a polynomial time reduction from the classical
Minimum-Bisection problem, a formal definition of which is given below.

Definition 3.2 (Minimum-Bisection). Given an undirected graph G = (V ,E), partition V into two
subsets V1 and V2 of equal size such that the number of edges with one endpoint in V1 and one
endpoint in V2 is minimized. It is assumed that |V | is even.

For a given instance G = (V ,E) of the Minimum-Bisection problem, we construct the correspond-
ing CCDM2 instance as follows:

• For every vertex i of the graph of the Minimum-Bisection instance, the CCDM2 instance has a
corresponding database Bi with unit size, i.e., wi = 1,

• For every edge e = (i, j) of the graph of the Minimum-Bisection instance, the CCDM2 instance
has a corresponding application Ae with unit application testing cost (ce = 1) that only calls
databases Bi and Bj ,

• The CCDM2 instance has only two shifts and the size of each shift is |V |

2 .

Notice that the constructed CCDM2 instance has |V | databases and |E | applications such that each
application calls exactly two databases. In any feasible solution to the CCDM2 instance, exactly
l = |V |

2 databases are assigned to the first shift and the remaining l databases are assigned to the
second shift. If both of the databases called by an application Ai are assigned to the same shift,
then application Ai needs to be tested only once (xi = 1) in the database migration process, and it
needs to be tested twice (xi = 2) otherwise. Let d denote the number of applications that call one
database from each shift, and thus need to be tested twice. Then, the total application testing cost
of the CCDM2 instance is (|E | + d), since d of the |E | applications are tested twice and all other
applications are tested only once. Since |E | is fixed, the optimal solution to the CCDM2 instance is
the one that minimizes d .

Given a solution to the constructed CCDM2 instance, consider the following solution to the given
Minimum-Bisection instance:

• If database Bi of the constructed CCDM2 instance is assigned to the first shift, then assign
vertex i of G to V1,

• If database Bi of the constructed CCDM2 instance is assigned to the second shift, then assign
vertex i of G to V2.

Notice that an edge e = (i, j) of the given Minimum-Bisection instance has one endpoint in V1 and
one endpoint in V2 if and only if the databases Bi and Bj of the CCDM2 instance are assigned to
different shifts, and thus the application Ae is to be tested twice. Therefore, the number of edges with
one endpoint in V1 and one endpoint in V2 of the given Minimum-Bisection instance is equal to the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

8 Anon.

number of applications that needs to be tested twice in the constructed CCDM2 instance, which is
denoted by d . □

4 FIXED-PARAMETER INTRACTABILITY OF THE CCDM PROBLEM
In this section, we study the fixed-parameter tractability of the CCDM problem for 4 different input
parameters. These are the number of applications, the number of shifts, the maximum number of
databases that are called by an application, and the maximum number of applications that calls a
database. Notice that Theorem 3.1 establishes fixed-parameter intractability for all 12 models of the
CCDM problem, where the parameter is the number of shifts, or the maximum number of databases
that are called by an application. In the rest of the section, we prove intractability results for the
remaining parameters.

Theorem 4.1 establishes fixed-parameter intractability for all the problems in CCDM⟨∗ | arb | ∗⟩,
when parameterized by the number of applications.

THEOREM 4.1. The 6 problems in CCDM⟨∗ | arb | ∗⟩ are NP-hard, even when the number of
applications |A| is 1.

PROOF. Note that the set of instances of the problem in CCDM⟨const | arb | const⟩ is a subset
of the instances of any problem in CCDM⟨∗ | arb | ∗⟩ when |A| = 1. Thus, we only need to show
that the problem in CCDM⟨const | arb | const⟩ is NP-hard, even when |A| = 1. We will do that via
a polynomial reduction from the classical Partition problem, a formal definition of which is given
below.

Definition 4.2 (Partition). Given a multiset S of positive integers, is S can be partitioned into two
subsets S1 and S2 such that the sum of the numbers in S1 is equal to the sum of the numbers in S2?

Given a Partition instance S = {s1, s2, . . . , sn}, we construct a corresponding CCDM in CCDM⟨const | arb | const⟩
with one application as follows:

• For every integer si in the multiset S of the Partition instance, the CCDM instance has a
corresponding database Bi with size si , i.e., wi = si ,

• The CCDM instance has one application A1 with unit testing cost, that calls all of the n
databases,

• The CCDM instance has sufficiently many shifts and the size of each shift is
∑n
i=1 si
2 .

Since A1 calls all the databases, the total application testing cost is equal to the number of shifts
with at least one database assigned. Thus, the CCDM instance has a solution with total application
testing cost of 2 if the databases can be clustered into two shifts. The theorem holds since the
databases can be clustered into two shifts, if and only if the answer to the Partition instance is
“yes". □

Theorem 4.3 establishes fixed-parameter intractability for all 4 of the problems in CCDM⟨const | ∗
| arb⟩ ∪ CCDM⟨arb | ∗ | arb⟩, when parameterized by the maximum number of applications that
call a database.

THEOREM 4.3. All of the problems in CCDM⟨const | ∗ | arb⟩ ∪ CCDM⟨arb | ∗ | arb⟩ are
NP-hard, even if each database is called by at most two applications.

PROOF. Note that the set of instances of the problem in CCDM⟨const | const | arb⟩ is a subset of
the instances of any problem in CCDM⟨const | ∗ | arb⟩ ∪ CCDM⟨arb | ∗ | arb⟩. Thus, all we need
is to show that the problem in CCDM⟨const | const | arb⟩ is NP-hard, even when each database is
called by at most two applications. This is done via a polynomial reduction from Clique problem, a
formal definition of which is given below.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 9

Definition 4.4 (Clique). Given a graph G = (V ,E) and an integer k, is there a fully connected
subgraph G ′ ⊆ G consisting of k vertices?

Given a Clique instance ⟨G = (V ,E),k⟩, we construct an instance of the problem in CCDM⟨const | const | arb⟩
as follows:

• For every vertex vi of the Clique instance, the CCDM instance has a corresponding application
Ai with unit application testing cost, i.e., ci = 1.

• For every edge e of the Clique instance, the CCDM instance has a corresponding database Be
with unit size, i.e., we = 1.

• For every edge e = (vi ,vj) of the Clique instance, the applications Ai and Aj of the CCDM
instance calls database Be . Notice that each database is called by exactly 2 applications.

• The CCDM instance has |E | − k ·(k−1)
2 + 1 shifts. The size of the first shift is k ·(k−1)

2 , and the
size of each of the remaining |E | − k ·(k−1)

2 shifts is 1.
Figure 2 explains this reduction. In Figure 2, we have a Clique instance on the left and the

corresponding CCDM instance constructed by the above reduction on the right.

v1 v2

v3 v4

v5

v6 v7

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

A1

A2

A3

A4

A5

A6

A7

Fig. 2. There is a Clique instance with k = 4 on the left. The corresponding CCDM instance is
presented on the right. The CCDM instance has 7 applications (each of which corresponds to a node
on the left) and 10 databases (each of which corresponds to an edge on the left). All applications have
unit testing cost, and all databases have unit size. The call relationship is captured with the bipartite
graph. In the CCDM instance, we have a total of 5 shifts. The size of the first shift is k (k−1)

2 = 6, and the
size of each of the remaining 4 shifts is 1. In the optimal solution to the CCDM instance, the databases
B1, . . . ,B6 are assigned to the first shift, and the remaining databases are assigned to the remaining
shifts separately. In the optimal solution, the applications A1,A2,A3, and A4 are tested once since all
the databases they call are assigned to the first shift. Each of the remaining applications is tested
twice. And hence, the total application testing cost of the optimal solution is 10.

We next show that there is a k-clique in G, if and only if the corresponding CCDM instance has
a solution with a total application testing cost of 2 · |E | − k2 + 2 · k. Let c∗ denote the cost of the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

10 Anon.

minimum-cost solution for the constructed CCDM instance. Since each database is called by exactly
2 applications, we have c∗ > 2 · (|E | − k ·(k−1)

2) = 2 · |E | −k2+k . This follows from the fact that both of
the applications calling a database assigned to one of the |E | − k ·(k−1)

2 shifts with size 1 must be tested
immediately after the migration of that shift, leading to a test cost of 2(|E | − k ·(k−1)

2) = 2 · |E | −k2 +k .
For the first shift, whose size is k ·(k−1)

2 , we have a total application test cost of k, if and only if the
vertices in G corresponding to the databases in this shift induce a clique of size k. This follows
trivially from the fact that the number of edges in a k-clique is k ·(k−1)

2 . Thus, c∗ ≥ 2 · |E | − k2 + 2 · k
and c∗ = 2 · |E | − k2 + 2 · k if and only if G has a clique of size k. Since all values in the reduction
are polynomially bounded, it follows that the problem in CCDM⟨const | const | arb⟩ is strongly
NP-hard, even when each database is called by at most two applications. □

5 LOWER BOUND ON THE RUNNING TIME OF EXACT ALGORITHMS
In this section, we present a lower bound on the running time of any exact algorithm for the CCDM
problem. In particular, we show that, unless the Exponential Time Hypothesis (ETH) fails, there is
no 2o(n) time algorithm for the CCDM problem. In fact, we show that, unless the ETH fails, there is
no 2o(n) time algorithm for the CCDM2 problem. Note that this lower bound rules out a O

(
2(n1−ϵ)

)
algorithm for any ϵ > 0.

Consider a 3CNF formula Φ with m′ clauses and n′ variables. From Φ we construct a CCDM2
instance I as follows:

(1) Create two shifts S1 and S2 of size n′.
(2) For each variable xi , create two databases B+i and B−

i , both of which has size 1. Additionally,
create applications Ai,1 through Ai,m′−1 that calls the databases B+i and B−

i . The testing cost of
each of these applications is 1.

(3) For each pair of variables xi and x j , i < j, and each clause ϕk :
(a) If ϕk uses the literals xi and x j , then create the following applications with a testing cost of

1:
(i) The application A+−i, j,k calling the databases B+i and B−

j .
(ii) The application A−+

i, j,k calling the databases B−
i and B+j .

(iii) The application A−−
i, j,k calling the databases B−

i and B−
j .

(b) If ϕk uses the literals xi and ¬x j , then create the following applications with a testing cost of
1:

(i) The application A++i, j,k calling the databases B+i and B+j .
(ii) The application A−+

i, j,k calling the databases B−
i and B+j .

(iii) The application A−−
i, j,k calling the databases B−

i and B−
j .

(c) If ϕk uses the literals ¬xi and x j , then create the following applications with a testing cost of
1:

(i) The application A++i, j,k calling the databases B+i and B+j .
(ii) The application A+−i, j,k calling the databases B+i and B−

j .
(iii) The application A−−

i, j,k calling the databases B−
i and B−

j .
(d) If ϕk uses the literals ¬xi and ¬x j , then create the following applications with a testing cost

of 1:
(i) The application A++i, j,k calling the databases B+i and B+j .

(ii) The application A+−i, j,k calling the databases B+i and B−
j .

(iii) The application A−+
i, j,k calling the databases B−

i and B+j .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 11

(e) If ϕk does not use both of the variables, then create the following applications with a testing
cost of 1:

(i) The application A++i, j,k calling the databases B+i and B+j .
(ii) The application A+−i, j,k calling the databases B+i and B−

j .
(iii) The application A−+

i, j,k calling the databases B−
i and B+j .

(iv) The application A−−
i, j,k calling the databases B−

i and B−
j .

From Φ, we also create the CCDM2 instance I ′ with the same shifts and databases as I , but with
the following applications:

(1) For each variable xi , create the application Ai,m′ with a testing cost of 1 that calls the databases
B+i and B−

i .
(2) For each clause ϕk = (li ∨ lj ∨ lh), i < j < h, create:

(a) The application A
si sj
i, j,k calling databases Bsii and B

sj
j where si and sj are the signs of literals li

and lj (si = + if li is a positive literal and si = − if li is a negative literal).
(b) The application Asi sh

i,h,k calling databases Bsii and Bshh .
(c) The application A

sj sh
j,h,k calling databases Bsjj and Bshh .

Note that I ′ has (n′ + 3 ·m′) applications. Additionally, note that no application in I ′ is in I and
that, when considering both I and I ′, there are a total of m′ applications using each pair of databases.
Thus, there are a total of (m′ ·

(2·n′

2
)
− 3 ·m′ − n′) applications in I .

We now show that Φ is NAE-satisfiable, if and only if the databases in I can be migrated with a
total testing cost of at most (m′ ·

(2·n′

2
)
+m′ · n′2 − 5 ·m′ − 2 · n′).

LEMMA 5.1. Let Φ be a 3CNF formula and let I and I ′ be the CCDM2 instances created from Φ
by the above construction. Φ is NAE-satisfiable, if and only if the databases in I can be migrated
with a testing cost of at most (m′ ·

(2·n′

2
)
+m′ · n′2 − 5 ·m′ − 2 · n′).

PROOF. Note that the databases in I can be migrated with a total application testing cost of at
most (m′ ·

(2·n′

2
)
+m′ · n′2 − 5 ·m′ − 2 · n′), if and only if at most (m′ · n′2 − 2 ·m′ − n′) applications

in I need to be tested twice. In any database migration schedule, a total ofm′ · n′2 applications need
to be tested twice if we consider both the applications in I and the applications in I ′. Thus, migration
of the databases in I has a total testing cost of at most (m′ ·

(2·n′

2
)
+m′ · n′2 − 5 ·m′ − 2 · n′), if and

only if at least (2 ·m′ + n′) applications in I ′ need to be tested twice.
Let M be a migration of the databases such that at least (2 ·m′ + n′) applications in I ′ need to be

tested twice. Let x be an assignment to the variables in Φ such that xi is assigned true if database B+i
is assigned to shift S1 and false otherwise.

Consider the clause ϕk = (li ∨ lj ∨ lh). Let si , sj , and sh be the signs of literals li , lj , and lh . If the
databases Bsii , Bsjj , and Bshh are all assigned to the same shift, then none of the applications Asi sj

i, j,k ,

Asi sh
i,h,k , Asj sh

j,h,k need to be tested twice. If the databases are assigned to separate shifts, then it must be
the case that two databases are assigned to one shift and one database is assigned to the other shift.
Thus, two of these applications will need to be tested twice and one application will need to be tested
once. Consequently, no migration will test more than 2 ·m′ of the applications in I ′ associated with
clauses of Φ twice.

Thus, M needs to test all n′ applications in I ′ associated with the variables of Φ twice. This means
that for each i, the databases B+i and B−

i are assigned to separate shifts. Thus, if xi is assigned true,
then B+i ∈ S1 and B−

i ∈ S2. Conversely, if xi is assigned false, then B+i ∈ S2 and B−
i ∈ S1. From the

arguments made previously, at least two of the applications associated with the clause ϕk need to be
tested twice. Thus, at least one of the literals in ϕk is assigned true and at least one of the literals in
ϕk is assigned false. Consequently, x NAE-satisfies Φ.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

12 Anon.

Now assume that x is an assignment that NAE-satisfies Φ. From x we construct a migration M of
the databases in I as follows:

For each variable xi :

(1) If xi is assigned true by x, then assign B+i to shift S1 and B−
i to shift S2.

(2) If xi is assigned false by x, then assign B+i to shift S2 and B−
i to shift S1.

Note that M tests all n′ applications in I ′ associated with the variables of Φ twice.
Consider the clause ϕk = (li ∨ lj ∨ lh). Let si , sj , and sh be the signs of literals li , lj , and lh . Since x

NAE-satisfies Φ, at least one literal in ϕk is true and at least one literal is false. If all three databases
Bsii , Bsjj , and Bshh were assigned to the same shift, then by construction of M , x would either set
all three literals in ϕk to true or it would set all three literals in ϕk to false. Since x NAE-satisfies
Φ, this cannot happen. Thus, the databases Bsii , Bsjj , and Bshh need to be assigned to separate shifts.
Consequently, two of the applications Asi sj

i, j,k , Asi sh
i,h,k , Asj sh

j,h,k need to be tested twice. This means that
M tests 2 ·m′ of the applications in I ′ associated with clauses of Φ twice.

A total of (n′+2 ·m′) applications in I ′ need to be tested twice. From the arguments uses previously,
this means that migrating the databases in I has total cost at most (m′ ·

(2·n′

2
)
+m′ ·n′2 − 5 ·m′− 2 ·n′)

as desired. □

From Lemma 5.1, the CCDM2 problem cannot be solved in time 2o(n) unless the ETH fails.

THEOREM 5.2. The CCDM2 problem cannot be solved in time 2o(n), unless the ETH fails.

PROOF. Let Φ′ be a 3-CNF formula with m∗ clauses and n∗ variables. From Φ′ we can easily
construct a 3-CNF formula Φ with n′ ∈ O(m∗) variables and m′ ∈ O(m∗) clauses such that Φ is
NAE-satisfiable if and only if Φ′ is satisfiable [27].

From Φ, we can construct a CCDM2 instance I with n = 2 · n′ ∈ O(m∗) databases. From Lemma
5.1, Φ is NAE-satisfiable, if and only if the databases in I can be migrated with cost at most
(m′ ·

(2·n′

2
)
+m′ · n′2 − 5 ·m′ − 2 · n′). Thus, if an algorithm can solve the CCDM2 problem in 2o(n)

time, then 3-SAT could be solved in 2o(m) time.
From the Sparsification Lemma, this violates the ETH [16]. □

Corollary 5.3 below generalizes Theorem 5.2 for all of the models of the CCDM problem.

COROLLARY 5.3. There is no 2o(n) algorithm for any of the problems in CCDM⟨∗ | ∗ | ∗⟩, unless
the ETH fails. This holds even when there are only two shifts, and each application calls at most two
databases.

PROOF. Recall that CCDM⟨∗ | ∗ | ∗⟩ represents all of the models in our framework. Notice
that the CCDM2 problem trivially reduces to all the problems in CCDM⟨∗ | ∗ | ∗⟩, even with
the additional restrictions required by this corollary. The corollary follows directly from Theorem
5.2. □

6 APPROXIMATION COMPLEXITY
This section is devoted to approximability and inapproximability results for the CCDM problem. We
first present Algorithm 1, which is a randomized algorithm for the problems in CCDM⟨∗ | const | const⟩
when each application calls at most two databases. Throughout this section, let k be the number of
shifts.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 13

Algorithm 1 Approximation algorithm for CCDM⟨∗ | const | const⟩ when each application calls at
most two databases.

1: Function MIN-TEST-COST(⟨c,w,D, l⟩, ϵ)
2: if (n < 1 + k−1

k ·ϵ) then
3: Find the optimal solution by brute force.
4: else
5: Let i = 1.
6: while (there are unassigned databases) do
7: Select n

k of the unassigned databases uniformly at random.
8: Assign the selected databases to the shift i.
9: i = i + 1.

10: end while
11: end if

Theorem 6.1 establishes the approximation factor of Algorithm 1 by bounding the expected
number of times each application is tested in the solution constructed by Algorithm 1.

THEOREM 6.1. For any given ϵ > 0, Algorithm 1 returns a solution whose expected total
application testing cost is at most (2·k−1k + ϵ) times that of the optimum, for the CCDM problem
under the models ⟨∗ | const | const⟩, when each application calls at most two databases.

PROOF. Since Algorithm 1 finds the optimal solution in polynomial time by brute force if n <
1 + k−1

k ·ϵ , in the rest of the proof, we will assume the contrary, i.e., ϵ ≥ k−1
k ·(n−1) .

Let Xi be a random variable that denotes the number of times application Ai is tested in the
solution generated by Algorithm 1. Notice that Xi ∈ {1, 2} for all i, since each application calls
at most two databases. The total application testing cost of the solution returned by Algorithm
1 is

∑m
i=1 ci · Xi . Note that

∑m
i=1 ci is a lower bound for the cost of the optimal solution, since

each application has to be tested at least once. To complete the proof, all we need is to show
that E(

∑m
i=1 ci · Xi) ≤

(
2·k−1
k + ϵ

) ∑m
i=1 ci . Due to linearity of expectations, it suffices to show that

E(Xi) ≤

(
2·k−1
k + ϵ

)
for any i. If Ai calls exactly one database then this inequality is trivially satisfied

since E(Xi) = 1. So, in the rest of the proof, without loss of generality, we only consider applications
that call exactly two databases.

Let Ai be an application that calls databases Bj and Bl . Let Ei denote the event that databases Bj
and Bl are assigned to the same shift. Accordingly, Ei is the event that the databases Bj and Bl are
assigned to different shifts. E(Xi) can be bounded as in the following.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

14 Anon.

E(Xi) = 1 · Pr(Ei) + 2 · Pr(Ei)

= 1 ·
(n
k − 1
n − 1

)
+ 2 ·

(
1 −

(n
k − 1
n − 1

))
= 2 −

(n
k − 1
n − 1

)
= 2 −

n − k

k · (n − 1)

= 2 −
(

n − 1
k · (n − 1)

+
1 − k

k · (n − 1)

)
= 2 −

n − 1
k · (n − 1)

+
k − 1

k · (n − 1)

= 2 −
1
k
+

k − 1
k · (n − 1)

=
2 · k − 1

k
+

k − 1
k · (n − 1)

≤
2 · k − 1

k
+ ϵ, as desired.

□

The Minimum-Bisection problem and its variants are among the most intriguing problems in
the area of approximation algorithms [17]. This is because very little is known regarding their
approximability. For instance, though the best approximation algorithm for the Minimum-Bisection
problem achieves a guarantee of O(logn) [24], there is no result that rules out the possibility of a
PTAS. In the Weighted Minimum-Bisection problem, we are given an edge-weighted undirected
graph G = (V ,E), and the goal is to partition V into V1 and V2 such that | |V1 | − |V2 | | ≤ 1, and the
sum of the weights of the edges with endpoints in different sets is as small as possible. Theorem 6.2
below establishes that APX-hardness of a particular variant of the CCDM problem implies the same
for the Weighted Minimum-Bisection problem.

THEOREM 6.2. If any problem in CCDM⟨∗ | const | const⟩ is APX-hardwhen there are two
shifts and each application calls at most two databases, then the Weighted Minimum-Bisection
problem is APX-hard.

PROOF. Let P be a problem in CCDM⟨∗ | const | const⟩ when there are two shifts and each
application calls at most two databases. Assume that P is APX-hard. All we need is to prove that
the Weighted Minimum-Bisection problem is APX-hard under this assumption. We will do that via
a PTAS reduction to the weighted Minimum Bisection problem.

Given an instance I of P , we construct a corresponding Weighted Minimum-Bisection instance F
as in the following:

(1) For each database Bi of I , create a vertex vi in F , i.e., the vertex set of F is V = {v1, · · · ,vn}.
(2) For each application Ai of I that calls exactly two databases, say Bj and Bk , create the (vj ,vk)

edge in F with weight ci .
(3) If there are multiple edges between a pair of vertices in F , replace them with a single edge

whose weight is the sum of the weights of the replaced edges.
Given I , one can construct F in polynomial-time as described above and the size of F is no more

than the size of I . Thus this construction forms the function f required for a PTAS reduction.
Let o and o′ denote the value of the optimal solutions for the instances F and I , respectively. Let

CT represent the total cost of testing the applications in I once, i.e., CT =
∑

Ai ∈I ci . Notice that

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 15

o′ = o + CT . Without loss of generality, assume that o > 0. This is because it is trivial to decide
whether the optimal solution to a Weighted Minimum-Bisection instance is 0 or not.

For any ϵ > 0, let a be the (1 + ϵ)-approximate solution for instance F returned by the PTAS for
the Weighted Minimum-Bisection problem. We construct the solution a′ for I using a as follows.
For each vertex vi ∈ F , if vi ∈ V1 in a then assign the corresponding database Bi to the first shift
in a′. Otherwise, assign Bi to the second shift in a′. This forms the function д required for a PTAS
reduction.

Let z and z ′ denote the objective function values of a and a′, respectively. Let α(ϵ) = ϵ be the last
function required for a PTAS reduction. All we need to show is z′

o′ ≤ 1 + α(ϵ) = (1 + ϵ). To do this
we use the facts that z ′ = z +CT and o′ = o +CT . Thus,

z ′

o′
=
z +CT
o +CT

<
z

o
≤ 1 + ϵ

holds since CT > 0 and z ≥ o.
This means that the reduction from P to the Weighted Minimum-Bisection problem is a PTAS

reduction. Thus, if P is APX-hard, then so is the Weighted Minimum-Bisection problem. □

7 THEORETICAL RESULTS FOR THE HYPERGRAPH PARTITIONING PROBLEM
The theoretical results we obtained for the CCDM problem imply new theoretical results for the
classical Hypergraph Partitioning (HGP) problem and its variants. This section is devoted to derive
the new theoretical results for the HGP problem and its variants. First, we define the classical
balanced k-way HGP problem P1 and its two variants P2 and P3. While P2 is supported by two
state-of-the-art HGP tools PaToH[7] and KaHyPar [15], P3 is introduced in this paper.

An undirected hypergraph H is a binary pair (V ,N), where V is a set of vertices with weights
w : V → R≥0, and N is a set of nets (hyperedges) with weights c : N → R≥0.

A k-way partition Π = {V1,V2, . . . ,Vk } of V into k blocks is called ϵ-balanced if each block
satisfies the balance constraint

∑
v ∈Vi w(v) ≤ (1 + ϵ)Wavд whereWavд =

∑
v∈V w (v)

|V |
, and ϵ is called

the maximum imbalance ratio.

Classical Balanced k-way Hypergraph Partitioning Problem (P1): Given an undirected hy-
pergraph H = (V ,N ,w, c), an integer k, and a maximum imbalance ratio ϵ , Classical Balanced
k-way Hypergraph Partitioning Problem is to find a ϵ-balanced k-way partition Π that minimizes an
objective function defined over the nets.

Variable Block Size k-way Hypergraph Partitioning Problem (P2): Given an undirected hyper-
graph H = (V ,N ,w, c), a block size upper-bound vector L = ⟨L1,L2, . . . ,Lk ⟩, Variable Block Size
k-way Hypergraph Partitioning Problem is to find a k-way partition Π that minimizes an objective
function defined over the nets such that the total weight of the vertices in each block is at most the
corresponding block size upper bound.

Variable Block Size at most k-way Hypergraph Partitioning Problem (P3): Given an undi-
rected hypergraph H = (V ,N ,w, c), a block size upper-bound vector L = ⟨L1,L2, . . . ,Lk ⟩, Variable
Block Size k-way Hypergraph Partitioning Problem is to find a k ′-way partition Π for some k ′ ≤ k
that minimizes an objective function defined over the nets such that the total weight of the vertices in
each block is at most the corresponding block size upper bound.

There are three common objective functions used in the hypergraph partitioning context. These
are the connectivity, cut, and fan-out objective functions. For a given solution Π, let λ(e) denote the
number of blocks that contains a vertex incident on hyperedge e. The connectivity (con) objective
function is defined as con(Π) =

∑
e ∈N c(e)(λ(e) − 1). The fan-out objective function is defined as

f an − out(Π) =
∑

e ∈N c(e)λ(e). The cut objective function is defined as cut(Π) =
∑

e ∈NC
c(e), where

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

16 Anon.

NC denotes the set of hyperedges whose incident vertices are placed into at least two distinct blocks.
Optimizing the fan-out and con objective functions are equivalent since their values differ by exactly∑

e ∈N c(e). Also, when k = 2, the con and cut objective functions are equivalent, since for each
hyperedge e, we have λ(e) ∈ {1, 2}. In the rest of the section, when we say “some objective function”,
we mean any one of the con, cut, and fan-out objective functions.

Theorem 7.2, Proposition 7.3, and Proposition 7.4 relate the variants of the HGP problem and
the Weighted Minimum-Bisection problem from the perspectives of approximation complexity and
computational complexity of exact algorithms. The formal definition of the Weighted Minimum-
Bisection problem is given below.

Definition 7.1 (Weighted Minimum-Bisection). Given an undirected graph G = (V ,E) where E
is a set of edges with weights w : E → R≥0 , partition V into two subsets V1 and V2 such that
| |V1 | − |V2 | | ≤ 1 and the total weight of the edges with one endpoint in V1 and one endpoint in V2 is
minimized.

THEOREM 7.2. If there is an α -approximation algorithm for P2 for some objective function, then
there is an α-approximation algorithm for P3 for the same objective function. Furthermore, for any
function f , if there is an O(f (n))-time exact algorithm for P2 for some objective function, then there
is a O∗(f (n))-time exact algorithm for P3 for the same objective function.

PROOF. First, let us first fix an objective function for each HGP problems. Assume that there is an
α-approximation algorithm A for P2. We need to show that there is an α-approximation algorithm
B for P3. Given a P3 instance (H ,L = ⟨L1,L2, . . . ,Lk ⟩), algorithm B first constructs at most k
P2 instances and solves each P2 instance using algorithm A. Algorithm B then constructs the P2
instances as followings:

• Sort the block size upper-bound vector L in decreasing order and relabel blocks in this order.
• Let i be the smallest integer such that the total size of the first i blocks is greater than or equal

to the sum of the weights of all the vertices.
• For each j such that i ≤ j ≤ k, create the P2 instance (H ,Lj = ⟨L1,L2, . . . ,Lj ⟩).

Algorithm B then solves each of the (k − i + 1) P2 instances by using algorithm A. It then returns
the best solutions found for these (k − i + 1) instances.

Let o be an optimal solution for the given P3 instance. Without loss of generality, assume that o is
a k ′-way partition of vertices for some k ′ ≤ k. The proof follows since the objective function value
of o is equal to the objective function value of the optimal solution for the P2 instance (H ,Lk ′).

Let us now assume that there is an O(f (n))-time exact algorithm A′ for P2. We need to show that
there is an O∗(f (n))-time exact algorithm B′ for P3. B′ is the same as B except that it uses A′ as a
subroutine instead of A. Thus, the running time of B′ is O(k · f (n)) ⊆ O∗(f (n)). □

PROPOSITION 7.3. If there is an α-approximation algorithm for P2 for some objective function,
then there is an α -approximation algorithm for P1 for the same objective function. Furthermore, for
any function f , if there is an O(f (n))-time exact algorithm for P2 for some objective function, then
there is a O(f (n))-time exact algorithm for P1 for the same objective function.

PROOF. The proof immediately follows since P1 is the special case of the P2 where the size of

each block is
∑
v ∈V w(v) · (1 + ϵ)

k
. □

PROPOSITION 7.4. If there is an α-approximation algorithm for P1 (or P3) for some objective
function, then there is an α-approximation algorithm for the Weighted Minimum-Bisection problem
as well. Furthermore, for any function f , if there is an O(f (n))-time exact algorithm for P1 (or P3)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 17

for an objective function, then there is a O(f (n))-time exact algorithm for the Weighted Minimum-
Bisection problem.

PROOF. The proof immediately follows since the Weighted Minimum-Bisection problem is the
special case of both P1 and P3. □

Corollary 7.6 below establishes that there is no 2o(n) algorithm for the Weighted Minimum-
Bisection problem, unless the ETH fails. This statement is true even if the weights of the edges are
given in unary notation. This result immediately follows from Theorem 5.2 and Theorem 7.5 below.

THEOREM 7.5. If there is a 2o(n) algorithm for the Weighted Minimum-Bisection problem, then
there is a 2o(n) algorithm for the CCDM2 problem.

PROOF. Assume that there is a 2o(n) exact algorithm A for the Weighted Minimum-Bisection
problem. All we need is to show that there is a 2o(n) exact algorithm B for the CCDM2 problem.
Given a CCDM2 instance I , algorithm B first constructs a Weighted Minimum-Bisection instance
F , then solves F by using A, and then constructs a solution for I from the solution for F . Given I ,
construction of F is as follows:

• For each database Bj of I , create a vertex vj in F .
• For each application Ai that calls Bj and Bk of I , create the edge e = (vj ,vk) with weight 1.
• If there are multiple edges between a pair of vertices in F , then replace all of these edges with

a single edge whose weight is equal to the number of constituent edges.
Notice that the size of F is at most the size of I , and the above construction takes polynomial

time. B obtains an optimal solution for F by using A. In the optimal solution for F , some vertices
are assigned to V1 and some vertices are assigned to V2. In the solution to I , B assigns the databases
corresponding to the vertices in V1 to the first shift, and the databases corresponding to the vertices
in V2 to the second shift. The theorem follows since this mapping takes polynomial time, and the
optimal solution for F corresponds to the optimal solution for I . □

COROLLARY 7.6. There is no 2o(n) algorithm for the Weighted Minimum-Bisection problem,
unless the ETH fails. This statement is true even if the weights of the edges are given in unary
notation.

PROOF. The first statement immediately follows from the conjunction of the statements of The-
orem 5.2 and Theorem 7.5. The result also holds even if the weights of the edges are given in
unary notation since in the reduction given in the proof of Theorem 7.5, the size of the Weighted
Minimum-Bisection instance F is equal to the size of the CCDM2 instance I if the weights of the
edges in F are given in unary notation. □

Theorem 7.7 below establishes AC0-equivalence between the CCDM problem and P3 under
the fan-out (and thus, con) objective function. It is instrumental in obtaining the fixed-parameter
intractability results for the HGP variants given by Corollary 7.8 and Corollary 7.9.

THEOREM 7.7. The CCDM problem is AC0-equivalent to P3 under the fan-out (and thus, con)
objective function.

PROOF. To prove the theorem, we first give an AC0-reduction from the CCDM problem to P3
under the fan-out objective function. Then, we present an AC0-reduction from P3 under the fan-out
objective function to the CCDM problem.

Given a CCDM instance I , we construct a P3 instance under the fan-out objective function in
parallel by a CREW-PRAM machine as follows:

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

18 Anon.

• For each database Bj of I , use a single processor to create the vertex vj with weight w j . This
requires a total of n processors.

• For each application Ai of I , use as many processors as the number of databases Ai calls to
create a hyperedge ei . This requires a total of at most n ·m processors.

• For each shift i, use a single processor to create a block i with size li . This requires a total of k
processors.

Each of these steps takes constant time. Thus, the P3 instance can be constructed in constant time
using a CREW-PRAM machine with at most (n ·m + n + k) processors. Note that a CREW-PRAM
is a parallel random access machine whose processors can simultaneously read data from the same
location but cannot simultaneously write data to the same location. Therefore, this is a AC0-reduction.

Given a P3 instance under the fan-out objective function, we construct a CCDM instance I in
parallel by a CREW-PRAM machine as follows:

• For each vertex vj of F , use a single processor to create the database Bj with weight w j . This
requires a total of n processors.

• For each hyperedge ei of F , use as many processors as the number of vertices ei is incident on
to create an application Ai . This requires a total of at most n ·m processors.

• For each block i, use a single processor to create a shift i with size Li . This requires a total of k
processors.

Each of these steps takes constant time. Thus, the CCDM instance can be constructed in constant
time using a CREW-PRAM machine with at most (n ·m + n + k) processors. Therefore, this is a
AC0-reduction. □

COROLLARY 7.8. Both P2 and P3 under any objective function are fixed-parameter intractable,
when parameterized by the number of hyperedges. This statement is true even if k = 2.

PROOF. Recall that for k = 2, the cut and the con objective functions are equivalent. Thus, for
k = 2, the CCDM problem is AC0-equivalent to P3 under any objective function due to Theorem 7.7.
Recall from Theorem 4.1 that the CCDM problem is NP-hard even when the number of applications
|A| is 1. In the AC0-reduction used in the proof of Theorem 7.7, the number of applications of the
CCDM instance coincides with the number of hyperedges of the P3 instance. Thus, P3 under any
objective function is fixed-parameter intractable, when parameterized by the number of hyperedges.
From Theorem 7.2, this result also holds for P2. □

COROLLARY 7.9. Both P2 and P3 under the con and fan-out objective functions are fixed-
parameter intractable, when parameterized by the maximum degree of any vertex. This statement is
true even if both the vertices and the hyperedges are unweighted.

PROOF. The CCDM problem is AC0-equivalent to P3 under the con and fan-out objective func-
tions due to Theorem 7.7. Recall from Theorem 4.3 that the CCDM problem is NP-hard even if each
database is called by at most two applications. In the AC0-reduction used in the proof of Theorem
7.7, the number of applications calling a database of the CCDM instance coincides with degree of
the corresponding vertex of the P3 instance. Thus, P3 under the con and fan-out objective functions
is fixed-parameter intractable, when parameterized by the maximum degree of any vertex. Note
that the CCDM instance constructed in the proof of Theorem 4.3 is an instance of the problem in
CCDM⟨const | const | arb⟩. Additionally, in the proof of Theorem 7.7 application testing costs
coincide with hyperedge weights, and database sizes coincide with vertex weights. Thus, this result
holds even if both the vertices and the hyperedges are unweighted. From Thereom 7.2, this result
holds for P2 as well. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 19

8 EMPIRICAL STUDY
In this section, we first review the heuristic algorithms developed for P2. Then, we describe how we
adapt them for P3. Finally, we evaluate their performances on randomly generated 1, 080 instances
for each of the 12 CCDM models.

8.1 The Hypergraph Partitioning Problem and Heuristics
As we showed in the previous section, the CCDM problem is AC0-equivalent to P3 under the con
and fan-out objective functions. As shown in the proof of Theorem 7.2, a solution to an instance of
P3 can be found using the solvers for P2. So, we devote this subsection to a review of heuristics
developed for P2.

Since the Classical Balanced k-way Hypergraph Partitioning Problem is NP-hard [9], a large
amount of effort is put into heuristic algorithms [3, 4, 7, 15, 18, 19, 28] to tackle the problem in
practice. Most of these heuristic algorithms use multilevel hypergraph partitioning scheme, which
consists of the following three stages: coarsening, initial partitioning, uncoarsening. In the coarsening
stage, vertices or nets of the hypergraph are contracted to obtain a series of smaller hypergraphs. In
the initial partitioning stage, an initial partition is obtained by partitioning the smallest hypergraph
either by computing k-way partition directly or using recursive bisectioning until k blocks are found.
In the uncoarsening stage, the initial partition uncoarsened back to obtain solutions to the larger
hypergraphs until a solution to the original hypergraph is obtained. A local search procedure is used
at each level of the uncoarsening stage for a more global view. The most commonly used local search
procedure is the FM [8] heuristic. There are various tools for the P1 problem, but only PaToH and
KaHyPar support the P2 problem. So, below we describe the components of these tools and how we
adapt them to solve the CCDM problem.

PaToH uses a multilevel hypergraph partitioning scheme and recursive bisectioning to find an
initial partition and a variation of the FM heuristic in the uncoarsening stages. It provides three
different settings: speed, default, and quality. We use it on both default and quality settings with their
default parameters. We refer to them as PaToH-D and PaToH-Q, respectively.

KaHyPar is an n-level hypergraph partitioning framework developed from a series of papers
[3, 4, 10, 14, 15, 28]. The latest version of the direct k-way partitioner in the KaHyPar framework,
which is referred to as kKaHyPar, uses an n-level hypergraph partitioning scheme. As the local
search algorithm, it uses an FM-based heuristic along with the Minimum Flow Refinement heuristic
(MFR) [10]. There is also a meta-heuristic in the KaHyPar framework, which is referred to as
kKaHyPar-E, that employs a sophisticated genetic algorithm that uses recombination and mutation
operators specifically tailored for the HGP problem to explore the solution space efficiently (for more
details, see [4]). In more recent work, new problem specific recombination and mutation operators
are combined with kKaHyPar-E to create a more effective algorithm. We denote this algorithm with
kKaHyPar-EBQ [1].

While kKaHyPar, kKaHyPar-E and kKaHyPar-EBQ support variable block sizes, PaToH-D and
PaToH-Q can take target block sizes. Target block sizes do not correspond to the maximum block
size; rather, they are the desired sizes of the blocks. All heuristics use all k blocks necessarily
since they find k-way partitions. However, in the CCDM problem, not all shifts need to be used.
Furthermore, our initial experiments showed that PaToH-D and PaToH-Q might compromise solution
quality to respect the target block sizes. Therefore, we made the following adaptations to the heuristic
algorithms.

Adaptations: We first sort the blocks in the decreasing order of their sizes. Let Li =
∑i

j=1 li , where
li denotes size of the block i. Additionally, letWt =

∑
v ∈V w(v). Let x be the smallest integer such

that Lx ≥ Wt . In our experiments, we run kKaHyPar-E and kKaHyPar-EBQ multiple times with

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

20 Anon.

different numbers of blocks ranging between x and k. In order to prevent PaToH-D and PaToH-Q
from compromising solution quality to respect the target block sizes, we run them multiple times with
different numbers of blocks. For each number of blocks i such that Li ≥Wt , we first run PaToH-D
and PaToH-Q with the first i blocks having their original block sizes as their target block sizes. We
then decrease the size of the last block by one and run it again until either the new total block size is
less than the total vertex size, or the last block size is less than 0 to obtain more diverse partitions. To
make a fair comparison between PaToH-D, PaToH-Q, and kKaHyPar, we run kKaHyPar the same
number of times for each number of blocks but without changing the last block size.

8.2 Instance Generation and Experimental Setup
The parameters that are the same for all 12 of the models are described below.

• Number of databases (n): We select 3 values for n : 10, 15, 20.
• Number of applications (m): We select 3 values form : 2 · n, 3 · n, 5 · n.
• Number of shifts (k): We select 4 values for k : 2, 3, 4, 5.
• Number of databases called by applications (p): For each application, p is chosen uniformly at

random from {2, 3, 4, 5} and then p databases are selected uniformly at random.

For each of these parameters we generate 10 instances, which adds up to 360(= 3 · 3 · 4 · 10)
instances. We ensure that each database is called by at least one application. Database sizes and
application testing costs in these instances are chosen according to their respective models. For
models with arbitrary database sizes or application testing costs, they are chosen uniformly at random
from {1, . . . , 10}, and they are chosen as 1 for the models with constant database sizes or constant
application testing costs. For models with proportional testing costs, the cost of testing an application
Ai is the total size of the databases that Ai calls.

3 shift sizes with different levels of imbalance are chosen for all of the generated instances to
extend them into a total of 1080 instances for each model, and 12960 instances in total.

For the models with uniform shift sizes and constant database sizes, we choose shift sizes as
⌈Wavд⌉ + ϵ , ∀ϵ = 0, 1, 2. For the models with uniform shift sizes and arbitrary database sizes, we
choose shift sizes as ⌈(1 + ϵ) ·Wavд⌉, ∀ϵ = 0.1, 0.2, 0.3.

For the models with non-uniform shift sizes and constant database sizes, for shift k , lk = ⌈Wavд⌉ +

ϵk , where ϵk is chosen uniform at random from {0, 1, 2}, {0, . . . , 4}, {0, . . . , 6}. For the models with
non-uniform shift sizes and arbitrary database sizes, for shift i, li = ⌈(1 + ϵi) ·Wavд⌉, where ϵi is
chosen uniform at random from [0, 0.2], [0, 0.4], [0, 0.6]. Optimal solutions for these instances are
found by solving the Integer Linear Program (ILP) given in Appendix 2.1.

All experiments are performed on the same computer that has a 64-bit AMD Ryzen 7 2700X CPU
and 32GB DDR4 3200 MHz RAM running Ubuntu 18.04.02. The ILP given in appendix 2.1 is
implemented in Java version 8 and solved using CPLEX version 12.6.2. The ILP uses all 8 cores
with 16 threads, while the heuristic algorithms use a single core.

8.3 Performance of the Heuristic Algorithms
Recall that we generated a total of 12, 960 instances of the CCDM problem. On each of these
instances, we ran CPLEX on the ILP given in Appendix 2.1 to generate an optimal solution. For each
heuristic, we used the relative gap between the solution generated by the heuristic and the optimal
solution generated by CPLEX to measure the quality of that heuristic.

Several of the 12, 960 total instances were discarded for a variety of reasons. 7 instances were
discarded because CPLEX declared them to be infeasible. An additional 13 instances were discarded
because CPLEX was unable to solve them due to lack of memory. Another 28 instances were
discarded because databases could be migrated in a single shift. Finally, 608 instances were discarded

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 21

because at least one of the heuristics was unable to find a feasible solution. Table 1 details the
distribution of these discarded instances.

Model PaToH-D PaToH-Q kKaHyPar kKaHyPar-E kKaHyPar-EBQ
inf avg max inf avg max inf avg max inf avg max inf avg max

⟨const | const | const ⟩ 0 1.34 10.29 0 1.09 8.33 0 2.15 15.58 0 0.52 8.16 1 0.36 4.35
⟨prop | const | const ⟩ 0 1.53 8.76 0 1.20 8.76 0 2.31 17.92 0 0.65 6.88 0 0.49 6.88
⟨arb | const | const ⟩ 0 1.52 11.50 0 1.20 11.50 0 2.15 17.37 0 0.59 8.91 1 0.47 6.47
⟨const | arb | const ⟩ 47 2.55 18.18 61 2.20 14.05 9 2.37 17.31 10 0.72 10.53 15 0.54 10.53
⟨prop | arb | const ⟩ 48 2.52 15.03 82 2.35 16.42 16 2.84 13.78 13 0.84 7.57 26 0.56 7.48
⟨arb | arb | const ⟩ 50 2.93 16.77 69 2.44 21.31 16 2.46 16.72 14 0.71 8.68 24 0.50 9.29
⟨const | const | arb ⟩ 0 1.59 12.68 0 1.26 12.68 0 3.18 39.13 0 0.86 8.82 7 0.54 10.00
⟨prop | const | arb ⟩ 0 1.36 13.28 0 1.09 11.23 0 5.23 47.59 0 0.81 10.07 9 0.42 9.01
⟨arb | const | arb ⟩ 0 1.75 15.84 0 1.38 22.98 0 3.26 41.13 0 0.88 8.91 11 0.53 6.52
⟨const | arb | arb ⟩ 31 3.17 17.91 44 2.73 18.64 22 3.33 22.00 19 1.60 13.85 40 1.29 9.86
⟨prop | arb | arb ⟩ 28 2.93 18.62 59 2.88 18.68 36 3.69 22.75 27 1.67 16.68 48 1.25 16.68
⟨arb | arb | arb ⟩ 41 3.67 20.28 58 2.99 20.28 27 3.51 20.55 31 1.69 12.44 66 1.39 12.44
⟨∗ | ∗ | ∗⟩ 245 2.20 20.28 373 1.87 22.98 126 3.03 47.59 114 0.95 16.68 248 0.68 16.68

Table 1. Table shows the number of infeasible instances, average and maximum relative gaps from
the optimal solution for each algorithm

To evaluate the performance of heuristic algorithms, for each instance, we divide the solutions
found by heuristic algorithms according to the optimal solution for that instance. We use geometric
mean to compute the average performances of heuristic algorithms. Table 1 shows the average and
worst case performances of each algorithm for each CCDM model on the remaining 12, 304 instances.

Model PaToH-D PaToH-Q kKaHyPar kKaHyPar-E kKaHyPar-EBQ
opt avg max opt avg max opt avg max opt avg max opt avg max

⟨const | ∗ | ∗⟩ 37.52 2.13 18.18 46.06 1.79 18.64 34.89 2.75 39.13 60.00 0.92 13.85 67.77 0.67 10.53
⟨prop | ∗ | ∗⟩ 33.19 2.06 18.62 43.72 1.84 18.68 27.99 3.51 47.59 51.99 0.98 16.68 61.82 0.67 16.68
⟨arb | ∗ | ∗⟩ 29.73 2.42 20.28 40.81 1.96 22.98 30.10 2.83 41.13 52.21 0.95 12.44 60.70 0.71 12.44
⟨∗ | const | ∗⟩ 41.66 1.52 15.84 51.87 1.20 22.98 35.01 3.03 47.59 59.37 0.72 10.07 69.42 0.47 10.00
⟨∗ | arb | ∗⟩ 24.59 2.96 20.28 34.46 2.59 21.31 26.66 3.03 22.75 49.75 1.20 16.68 56.95 0.92 16.68
⟨∗ | ∗ | const ⟩ 32.12 2.04 18.18 41.93 1.72 21.31 32.55 2.37 17.92 59.68 0.67 10.53 68.32 0.48 10.53
⟨∗ | ∗ | arb ⟩ 34.89 2.37 20.28 45.17 2.02 22.98 29.45 3.70 47.59 49.76 1.23 16.68 58.50 0.88 16.68
⟨∗ | ∗ | ∗⟩ 33.49 2.20 20.28 43.54 1.87 22.98 31.01 3.03 47.59 54.76 0.95 16.68 63.45 0.68 16.68

Table 2. Table shows the percentage of instances solved optimally, average and maximum relative
gaps from the optimal solution for each algorithm for CCDM models grouped by each parameter

Table 2 shows the percentage of instances solved optimally, average and worst case performances
of each algorithm for CCDM models grouped by each parameter. As seen in Table 2, the heuristic
algorithms perform better on CCDM instances in which database size is constant than they do
on instances in which database size is arbitrary. The performances of PaToH-D and PaToH-Q are
affected more compared to the KaHyPar variants for the database size parameter. Additionally, the
heuristics perform better on instances with constant shift size than they do on instances with arbitrary
shift size. This time, the performances of KaHyPar variants are affected more than PaToH variants for
the shift size parameter. The application testing cost parameter has the least effect on the performance
of the heuristics. Even though, heuristics perform worse, when the application testing costs are
proportional or arbitrary compared to the constant, its effect is lower than database size and shift

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

22 Anon.

size parameter. These results show that as the problem gets harder, the performance of the heuristics
degrades as expected.

On average, PaToH-Q returns solutions closer to the optimum solution than PaToH-D. However,
PaToH-Q failed to find a feasible solution for more instances than PaToH-D did. The kKaHyPar-EBQ
returns solutions closer to the optimum than any other heuristic while finding the second highest
number of infeasible solutions.

Fig. 3. Relative gap of all algorithms with respect to the fraction of the instances

Figure 3 shows that KaHyPar-EBQ outperforms all other algorithms and solves 63.45% of the
instances optimally. PaToH-D, PaToH-Q, kKaHyPar and kKaHyPar-E solve 33.49%, 43.54%, 31.01%,
54.76% of the instances optimally, respectively. PaToH-Q, PaToH-D, kKaHyPar, kKaHyPar-E, and
kKaHyPar-EBQ find solutions that are 5.78%, 5.36%, 7.69%, 2.97% and 2.34% within the optimal in
90% of the instances, respectively.

Algorithm
Algorithm PaToH-D PaToH-Q kKaHyPar KaHyPar-E KaHyPar-EBQ
PaToH-D - 12.17 38.66 9.92 6.45
PaToH-Q 30.48 - 42.17 11.58 6.80
KaHyPar 29.35 18.57 - 0.03 0.24
KaHyPar-E 51.48 39.47 51.38 - 1.66
KaHyPar-EBQ 55.49 43.90 54.56 18.77 -

Table 3. Each row of the table corresponds to the percentage of instances that algorithm find better
solutions compared to the other algorithm

Table 3 shows that kKaHyPar-E finds solutions that are closer to optimal than the solutions found
by PaToH-D, PaToH-Q, kKaHyPar and kKaHyPar-EBQ in 6, 334, 2, 285, 6, 322 and 204 instances,
respectively. However, PaToH-Q finds solutions that are closer to optimal than the solutions found by

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

Models for test cost minimization in database migration 23

Model Algorithm
PaToH-D PaToH-Q kKaHyPar ILP

avg. max avg. max avg. max avg. max
⟨const | const | const⟩ 0.95 5 10.67 56 97.36 580 25030.97 2667573
⟨prop | const | const⟩ 0.99 6 11 55 99.06 587 31403.13 9262589
⟨arb | const | const⟩ 0.97 6 10.80 56 97.19 584 18825.80 2961430
⟨const | arb | const⟩ 3.09 16 32.91 165 265.27 1264 11785.15 1792407
⟨prop | arb | const⟩ 3.47 19 39.17 209 267.96 1405 24738.52 3819110
⟨arb | arb | const⟩ 3.22 16 34.70 178 263.57 1283 13939.25 1995377
⟨const | const | arb⟩ 1.15 9 12.18 104 115.93 1176 41284.85 11262781
⟨prop | const | arb⟩ 1.97 17 21.12 147 197.86 1535 17416.48 1522711
⟨arb | const | arb⟩ 1.15 10 12.50 109 116.58 1180 21787.17 2620246
⟨const | arb | arb⟩ 3.19 20 33.37 214 270.45 1814 62326.42 10482791
⟨prop | arb | arb⟩ 4.02 33 44.28 429 313.45 2981 58715.74 4965643
⟨arb | arb | arb⟩ 3.32 22 35.85 225 273.78 1864 66833.88 16052122
⟨∗ | ∗ | ∗⟩ 2.24 33 24.33 429 194.59 2981 32445.66 16052122

Table 4. Table shows the average and maximum running times in milliseconds.

PaToH-D, kKaHyPar, kKaHyPar-EBQ in 3, 750, 5, 188 1, 425, 837 instances, respectively. Therefore,
to find better solutions using these heuristics, it might be better to combine kKaHyPar-EBQ and
PaToH-Q instead of kKaHyPar-EBQ and kKaHyPar-E.

We run PaToH-D, PaToH-Q, and kKaHyPar more times for the instances with arbitrary database
sizes compared to the instances with constant database sizes. This has a noticeable effect on the
average running times. Table 4 shows that for the instances with arbitrary database sizes, heuristic
algorithms take 2.5 to 3 times more time when compared to the instances with uniform database
sizes. Since we run PaToH-D, PaToH-Q, and kKaHyPar the same number of times, we can compare
their running times directly. PaToH-D is approximately 11 times faster than PaToH-Q and 87 times
faster than kKaHyPar on average. The average running time of CPLEX on the ILP is 33.2 seconds,
whereas the maximum running time is slightly less than 4.5 hours. It should not be forgotten that
CPLEX uses 16 threads, whereas each heuristic algorithm uses a single thread. So, direct comparison
is not possible.

9 CONCLUSION AND FUTURE RESEARCH DIRECTIONS
This paper introduced the CCDM problem, a general framework that is suitable for modeling
the database migration needs of a variety of enterprises with customized constraints. We showed
that the CCDM problem is NP-hard for all the models, even under the very restricted scenario,
where there are only 2 shifts and each application is calling at most 2 databases. We also studied
the parameterized complexity of the CCDM problem for four relevant parameters and presented
fixed-parameter intractability results for all of them. We have also presented a randomized (2·k−1k +ϵ)-
approximation algorithm for an interesting but a quite restricted special case of the CCDM problem
and showed that APX-hardness of the problems in CCDM⟨∗ | const | const⟩, with the restrictions
that there are two shifts and each application calls at most two databases, implies the same for the
Weighted Minimum-Bisection problem. We showed that our theoretical results imply new theoretical
results for variants of the classical Hypergraph Partitioning problem. On the experimental front, we
tested the performance of the problem specific adaptations of the well-known heuristics PaToH-D,

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

24 Anon.

PaToH-Q, and kKaHyPar as well as the state-of-the-art meta-heuristics kKaHyPar-E and kKaHyPar-
EBQ developed for the HGP problem on randomly generated instances of the CCDM problem. Our
results indicate that the adaptations of kKaHyPar-EBQ outperform the other algorithms. kKaHyPar-
EBQ found solutions that are 0.68% within optimal on average, and it solved 63.45% of the instances
optimally.

Every model of the CCDM problem is an interesting combinatorial optimization problem by
itself. It would be interesting to know for which models of the CCDM problem there are low factor
approximation algorithms. From our perspective, the following avenues of research are interesting:

(1) Derandomizing the randomized approximation algorithm: The approximation algorithm in this
paper randomly assigns databases to each shift. This lets us derive a bound on the expected cost
to test each application based on the probability that the two databases used by that application
are assigned to the same shift. Note that if certain complexity theoretic assumptions hold true,
then any randomized algorithm can be derandomized with only a polynomial slowdown [5].
However, for each method of derandomizing this algorithm, we have found a set of applications
for which the algorithm does not guarantee the desired approximation bound.

(2) Designing approximation algorithms and/or obtaining inapproximability results for all the
models of the CCDM problem: The randomized algorithm in this paper assumes that each
database and shift has constant size, and that each application uses at most two databases. We
plan to develop approximation algorithms for models of the CCDM problem without these
restrictions. Additionally, we plan to develop inapproximability results that are not dependent
on the Weighted Minimum-Bisection problem.

(3) Establishing fixed-parameter tractability or intractability for all models of the CCDM problem
- In this paper, we showed that the 6 problems in CCDM⟨∗ | arb | ∗⟩ are fixed parameter
intractable when parameterized by the number of applications. We plan to extend these results
to the remaining CCDM problems (those in CCDM⟨∗ | const | ∗⟩). Additionally, we plan to
investigate the parameterized complexity of the CCDM problem using alternative parameters,
such as the maximum number of applications that calls a database.

REFERENCES
[1] Utku Umur Acikalin and Bugra Caskurlu. 2022. Multilevel Memetic Hypergraph Partitioning with Greedy Recombina-

tion. https://doi.org/10.48550/ARXIV.2204.03730
[2] Utku Umur Acikalin, Bugra Caskurlu, Piotr J. Wojciechowski, and K. Subramani. 2021. New Results on Test-Cost

Minimization in Database Migration. In Algorithmic Aspects of Cloud Computing - 6th International Symposium,
ALGOCLOUD 2021, Lisbon, Portugal, September 6-7, 2021, Revised Selected Papers (Lecture Notes in Computer
Science), Gianlorenzo D’Angelo and Othon Michail (Eds.), Vol. 13084. Springer, 38–55. https://doi.org/10.1007/978-3-
030-93043-1_3

[3] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2017. Engineering a direct k-way Hypergraph
Partitioning Algorithm. In 19th Workshop on Algorithm Engineering and Experiments, (ALENEX 2017). 28–42.

[4] Robin Andre, Sebastian Schlag, and Christian Schulz. 2018. Memetic multilevel hypergraph partitioning. In Proceedings
of the Genetic and Evolutionary Computation Conference. 347–354.

[5] Sanjeev Arora and Boaz Barak. 2009. Computational complexity: a modern approach. Cambridge University Press.
[6] Daniel Beimborn, Thomas Miletzki, and Stefan Wenzel. 2011. Platform as a service (PaaS). Business & Information

Systems Engineering 3, 6 (2011), 381–384.
[7] Umit V Catalyurek and Cevdet Aykanat. 1999. Hypergraph-partitioning-based decomposition for parallel sparse-matrix

vector multiplication. IEEE Transactions on parallel and distributed systems 10, 7 (1999), 673–693.
[8] Charles M Fiduccia and Robert M Mattheyses. 1982. A linear-time heuristic for improving network partitions. In 19th

design automation conference. IEEE, 175–181.
[9] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

https://doi.org/10.48550/ARXIV.2204.03730
https://doi.org/10.1007/978-3-030-93043-1_3
https://doi.org/10.1007/978-3-030-93043-1_3

Models for test cost minimization in database migration 25

[10] Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner. 2020. Advanced Flow-Based Multilevel
Hypergraph Partitioning. In 18th International Symposium on Experimental Algorithms (SEA 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[11] Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro Orso, Maikel Pennings, Saurabh Sinha,
S Alexander Spoon, and Ashish Gujarathi. 2001. Regression test selection for Java software. ACM Sigplan Notices 36,
11 (2001), 312–326.

[12] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and Samee Ullah
Khan. 2015. The rise of “big data” on cloud computing: Review and open research issues. Information systems 47
(2015), 98–115.

[13] Jer Hayes. 2015. Multimedia big data: Content analysis and retrieval. Big-Data Analytics and Cloud Computing (2015),
37–51.

[14] Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2019. Network flow-based refinement for multilevel hypergraph
partitioning. Journal of Experimental Algorithmics (JEA) 24 (2019), 1–36.

[15] Tobias Heuer and Sebastian Schlag. 2017. Improving coarsening schemes for hypergraph partitioning by exploiting
community structure. In 16th International Symposium on Experimental Algorithms (SEA 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[16] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems Have Strongly Exponential
Complexity? J. Comput. System Sci. 63, 4 (2001), 512 – 530.

[17] Marek Karpinski. 2002. Approximability of the minimum bisection problem: An algorithmic challenge. In International
Symposium on Mathematical Foundations of Computer Science. Springer, 59–67.

[18] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multilevel hypergraph partitioning: Applica-
tions in VLSI domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7, 1 (1999), 69–79.

[19] George Karypis and Vipin Kumar. 2000. Multilevel k-way hypergraph partitioning. VLSI design 11, 3 (2000), 285–300.
[20] Alexandros Labrinidis and Hosagrahar V Jagadish. 2012. Challenges and opportunities with big data. Proceedings of

the VLDB Endowment 5, 12 (2012), 2032–2033.
[21] Ping Lu, Liang Zhang, Xiahe Liu, Jingjing Yao, and Zuqing Zhu. 2015. Highly efficient data migration and backup for

big data applications in elastic optical inter-data-center networks. IEEE Network 29, 5 (2015), 36–42.
[22] Dimas C Nascimento, Carlos Eduardo Pires, and Demetrio Mestre. 2015. Data quality monitoring of cloud databases

based on data quality SLAs. In Big-data analytics and cloud computing. Springer, 3–20.
[23] Sangameshwar Patil, Sasanka Roy, John Augustine, Amanda Redlich, Sachin Lodha, Harrick M Vin, Anand Deshpande,

Mangesh Gharote, and Ankit Mehrotra. 2010. Minimizing Testing Overheads in Database Migration Lifecycle.. In
COMAD. 191.

[24] Harald Räcke. 2008. Optimal hierarchical decompositions for congestion minimization in networks. In Proceedings of
the fortieth annual ACM symposium on Theory of computing. 255–264.

[25] YV Ravikumar, KM Krishnakumar, and Nassyam Basha. 2017. Oracle Database Migration. In Oracle Database
Upgrade and Migration Methods. Springer, 213–277.

[26] Mario Santana. 2016. Infrastructure as a Service (IaaS). In Cloud Computing Security: Foundations and Challenges.
CRC Press, 59.

[27] T.J. Schaefer. 1978. The complexity of Satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on
Theory of Computing, Alfred Aho (Ed.). ACM Press, New York City, NY, 216–226.

[28] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2016. k-way
Hypergraph Partitioning via n-Level Recursive Bisection. In 18th Workshop on Algorithm Engineering and Experiments,
(ALENEX 2016). 53–67.

[29] K Subramani, Bugra Caskurlu, and Alvaro Velasquez. 2018. Minimization of testing costs in capacity-constrained
database migration. In International Symposium on Algorithmic Aspects of Cloud Computing. Springer, 1–12.

[30] Silvia Regina Vergilio, José Carlos Maldonado, Mario Jino, and Inali Wisniewski Soares. 2006. Constraint based
structural testing criteria. Journal of Systems and Software 79, 6 (2006), 756–771.

[31] W Eric Wong, Joseph R Horgan, Aditya P Mathur, and Alberto Pasquini. 1999. Test set size minimization and fault
detection effectiveness: A case study in a space application. Journal of Systems and Software 48, 2 (1999), 79–89.

[32] Linlin Wu, Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2014. SLA-Based Resource Provisioning
for Hosted Software-as-a-Service Applications in Cloud Computing Environments. IEEE Transactions on Services
Computing 3, 7 (2014), 465–485.

[33] Xiaonian Wu, Mengqing Deng, Runlian Zhang, Bing Zeng, and Shengyuan Zhou. 2013. A task scheduling algorithm
based on QoS-driven in cloud computing. Procedia Computer Science 17 (2013), 1162–1169.

[34] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi. 2014. Internet of things for
smart cities. IEEE Internet of Things journal 1, 1 (2014), 22–32.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article . Publication date: May 2022.

	Abstract
	1 Introduction
	2 The Notation and Problem Formulation
	2.1 Integer Linear Program for the CCDM problem

	3 Computational Complexity of the CCDM Problem
	4 Fixed-parameter Intractability of the CCDM Problem
	5 Lower Bound on the Running Time of Exact Algorithms
	6 Approximation Complexity
	7 Theoretical Results for the Hypergraph Partitioning Problem
	8 Empirical Study
	8.1 The Hypergraph Partitioning Problem and Heuristics
	8.2 Instance Generation and Experimental Setup
	8.3 Performance of the Heuristic Algorithms

	9 Conclusion and Future Research Directions
	References

