
1

Minimization of Testing Costs in
Capacity-Constrained Database Migration

K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

LCSEE, West Virginia University, Morgantown, WV1

CE, TOBB University of Economics & Technology, Ankara, Turkey2

RISC, Air Force Research Laboratory, Rome, NY3

k.subramani@mail.wvu.edu, caskurlu@gmail.com, alvaro.velasquez@us.af.mil

Abstract. Database migration is an ubiquitous need faced by enter-

prises that generate and use vast amount of data. This is due to database

software updates, or from changes to hardware, project standards, and

other business factors [1]. Migrating a large collection of databases is a

way more challenging task than migrating a single database due to the

presence of additional constraints. These constraints include capacities

of shifts, sizes of databases, and timing relationships. In this paper, we

present a comprehensive framework that can be used to model database

migration problems of different enterprises with customized constraints,

by appropriately instantiating the parameters of the framework. We es-

tablish the computational complexities of a number of instantiations of

this framework. We present fixed-parameter intractability results for var-

ious relevant parameters of the database migration problem. Finally, we

discuss a randomized approximation algorithm for an interesting instan-

tiation.

1 Introduction

The database migration problem entails the movement of data between different

databases. Such migration is often necessary due to database software updates,

or from changes to hardware, project standards, and other business factors [1].

As per established rules of software reliability, when a database is migrated,

every application that is dependent upon it must be tested (i.e., run through

regression suites [2]). It is known that testing an application is an expensive

aspect of maintaining the application [3]. Consequently, the principal goal in

the migration process is to minimize the application testing cost [4]. This is a

pervasive issue in cloud computing clusters, where a pay-per-use infrastructure

and unpredictable workloads necessitate frequent allocation and movement of

2 K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

data [5]. Thus, there is a pressing need for efficient procedures to minimize

the resource overhead involved in data migration. Interest in this area has also

been fueled in recent years by the massive generation of data in what is now

being called the Big Data age [6]. Consequently, there has been a proliferation of

resource-intensive data centers and the adoption of cloud computing and storage

as a service in order to manage said data [7].

While the ubiquity of computational and storage capabilities of cloud com-

puting are undeniable, there remain open challenges with regards to resource

allocation and data management [8]. In fact, the migration of data in data cen-

ters remains a significant problem, due to the massive throughput of data and

the limited bandwidth of communication channels [9]. This problem is further

exacerbated by the overhead incurred from retesting applications after data mi-

gration and by Quality-of-Service (QoS) requirements, which demand minimal

interruptions to end-user applications [10]. As such, minimizing the cost associ-

ated with bandwidth-constrained database migration is of great interest. Patil et

al. [11] introduced the first systematic study on the database migration problem,

and proved that the problem is NP-hard for some special cases. They provided

an integer programming formulation, which can only be used for small instances

as well as a greedy heuristic that can be used for the large instances of the prob-

lem. In this paper, we define a very general framework that subsumes the model

in [11]. Our framework accommodates the modelling of database migration needs

of various enterprises with customized constraints. We present hardness results

for all the models in our framework, as well as fixed-parameter intractability

for various relevant parameters. We also present a randomized approximation

algorithms for a simple but interesting special case of the problem.

The organization of the paper is as follows:

– In Section 2, we formally define the capacity-constrained database migration

(CCDM) problem and introduce the notation used in the paper.

– In Section 3, we study the computational complexity of the (CCDM) problem

and prove that the problem is NP-hard for all the models of the problem

defined in Section 2.

– In Section 4, we study fixed parameter tractability of the CCDM problem

with respect to the four most relevant parameters of the problem.

– In Section 5, we present a randomized (3
2 + ε)-approximation algorithm for

a special case of the CCDM problem, and in Section 6 we point out some

research directions.

Minimization of Testing Costs in Capacity-Constrained Database Migration 3

2 Notations and Problem Formulation

In this section, we provide a formal definition of the framework for the capac-

ity constrained database migration problem (CCDM) and introduce the ter-

minology used in this paper. Assume we have a collection of m applications

A = {A1, A2, . . . , Am} and n databases B = {B1, B2, . . . , Bn}, with each appli-

cation calling one or more databases. The call relationship is stored in the n×m
matrix D = ‖dij‖, where

dij =

{
1, if application Ai calls database Bj

0, otherwise.

The matrix D = ‖dij‖, which represents a bipartite graph as shown in Figure

1, is part of the input. Associated with the set of applications A is a cost-vector

c = [c1, c2, . . . , cn]T , where ci represents the cost of testing application Ai once.

For each application Ai, we let xi be an integer variable that denotes the number

of times Ai will have to be tested in the migration schedule. The size-vector

w = [w1, w2, . . . , wm]T represents the size of databases, with wi representing the

size of Bi.

B1

B2

B3

B4

A1

A2

A3

A4

A5

A6

A7

Fig. 1: The bipartite graph shows the relationship between the databases and
the applications. The nodes in the left partition, represent the databases in the
system, while the nodes in the right partition, represent the applications. An
edge (b, a) exists in the graph if application a calls database b. This means
application a must be tested right after database b migrates. We note that each
database is associated with a nonempty set of applications, and each application
is associated with a nonempty set of databases.

4 K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

In the CCDM problem, the set of databases B is to be clustered into disjoint

subsets which we call shifts. The databases in each shift are migrated at the

same time. When a shift of databases migrates, each application that calls at

least one database in that shift needs to be tested immediately. For example, if

the set of databases called by an application Ai are scheduled to 5 distinct shifts,

then application Ai is to be tested 5 times throughout the migration process,

i.e., xi = 5. The cumulative size of the databases migrated in shift i (i.e., the

size of shift i) is denoted by li. The shift size-vector l = [l1, l2, . . . , lm]T is also

part of the input. In the worst case, when the size of each shift is smaller than

the total sizes of any two databases, we may have to assign each database to a

separate shift.

Thus, the input to the CCDM problem must contain the 4-tuple 〈c,w,D, l〉.
For instance, consider the following 4-tuple:

〈


1

1

1

2

2

3

3


,


5

7

10

12

 ,


1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 1 0 0 1 0 0

0 0 1 0 0 0 1

 ,



10

15

12

7

28

34


〉

In this example, we have seven applications and four databases, since the

matrix D has seven columns and four rows. We will name the applications as

A1, A2, . . . , A7, and the databases as B1, B2, B3, B4. Matrix D indicates which

applications call which databases. We observe that database B1 is called by ap-

plications A1, A3, A5, and A7. The database B2 is called by applications A2, A4,

and A6. The database B3 is called by applications A1, A2, and A5, and database

B4 is called by applications A3, and A7. The sizes of the databases B1, B2, B3,

and B4 are given as 5, 7, 10, and 12, respectively, in w. The database migration

operation in this example is to be completed in at most 6 shifts since |l| = 6

in the input. The cumulative size of the databases that migrate in each shift is

constrained by 10, 15, 12, 7, 28, and 34, respectively, in l.

There are several parameters associated with the CCDM problem:

(i) Application Testing cost (α) - The testing cost of an application depends

primarily on two factors: The time it takes to test the application, and the

skills required to test a given application. We consider the following three

Minimization of Testing Costs in Capacity-Constrained Database Migration 5

cost models associated with testing an application in order to take these

factors into account:

(a) Constant (const) - In this model, the cost of testing each application

is the same and is equal to some known fixed constant C. Note that

this model considers the scenario in which each application requires the

same level of skills and takes roughly the same time to test.

(b) Proportional (prop) - In this model, the cost of testing an application

after migrating a corresponding database is proportional to the sizes

of the migrated databases it calls. Note that this model considers the

situation where each application in the system requires the same level

of skills, but the testing time may vary from application to application.

(c) Arbitrary (arb) - In this model, there is no relation among the costs of

testing different applications. This model captures the problem of com-

panies that use application software from several different companies

such that each application requires personnel with different skill sets.

(ii) Size of Databases (β) - The size of a database is a factor in the amount

of time required for its migration. This is because the database migration

operation must read the database at the original location, write it at the

new location, and then delete the original database. Consider a bank that

maintains data for credit card accounts, savings accounts, and checking

accounts in different databases. Typically, a bank will have more customers

with a checking account than a savings account. Similarly, the number of

credit card customers will be significantly more than the number of savings

account customers since a typical customer has one savings account but

several credit cards. This means we need two size models associated with

the databases:

(a) Constant (const) - In this model, all databases have the same size

and are equal to some fixed constant W . This allows us to model

the database migration operation for companies whose databases have

more or less the same size.

(b) Arbitrary (arb) - In this model, the sizes of the databases are arbitrary.

This lets us model the database migration operation for companies

whose databases may significantly vary in size.

(iii) Shift size (γ) - During the database migration operation, some parts of the

database will be inaccessible. For some companies, there is no ideal time

to make a database unavailable. For instance, Facebook and Youtube have

6 K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

users all over the world which means the database access rate is roughly uni-

form. In this case, regardless when a database becomes inaccessible, there

will be a subset of users who cannot access the database until the migra-

tion is complete. It is critical for these companies to perform the database

migration operation in small shifts to minimize user dissatisfaction. For

companies (e.g., banks) that operate during regular business hours, it is fa-

vorable for the databases to be unavailable when the companies are closed

rather than when they are open. In order to model the needs of several

different companies, we use two size models associated with shifts.

(a) Uniform (unif) - In this model, the total size of the databases migrated

in the same shift is the same and is equal to a constant L, for all shifts

(i.e., l = 〈L,L, . . . , L〉). We note that this model suits better for the

database migration needs of companies that have uniform database

access rates.

(b) Non-uniform (non-unif) - In this model, the total size of the databases

migrated in each shift is arbitrary. We note that this model suits better

for the database migration needs of companies that have non-uniform

database access rates.

Thus, a model of the capacity-constrained database migration problem has

three parameters, and it is specified as a triple 〈α | β | γ〉. For instance,

〈arb | const | unif〉 refers to the capacity-constrained database migration prob-

lem in which the application testing costs are arbitrary, all databases have the

same size, and the shift sizes are uniform. For notational convenience we use ∗ as

an entry of the triple when we present a statement that is true for all the models

for that entry. For instance, the notation 〈arb | ∗ | ∗〉 refers to all 4 models

of the CCDM problem in which the application testing costs are arbitrary. The

following is formal definition of the CCDM problem:

CCDM: Given a 4-tuple 〈c,w,D, l〉, cluster the databases into shifts so that

the total application testing cost is minimized, while respecting the shift size con-

straints.

Given that we have 3 different models for application testing costs, 2 differ-

ent models for sizes of databases, 2 different models for shift sizes; the CCDM

problem formulation gives us a framework with a total of 12 different models

each of which is suitable for the database migration needs of different companies.

Minimization of Testing Costs in Capacity-Constrained Database Migration 7

3 Computational Complexity of the CCDM Problem

The formulation given for the database migration problem in [11] corresponds

to our CCDM problem under the model 〈arb | arb | unif〉. In [11], it is proven

that the CCDM problem is NP-hard under the model 〈arb | ∗ | ∗〉. In this

section, we strengthen the result in [11] via Theorem 1, which states that the

CCDM problem is NP-hard for all the models in our framework, even under

the restriction that there are only 2 shifts and each application calls at most 2

databases.

Theorem 1. The CCDM problem in models 〈∗ | ∗ | ∗〉 is NP-hard even under

the restrictions that there are only two shifts, and each application calls at most

two databases.

Proof. Since the set of instances of the capacity-constrained database migration

problem under the model 〈const | const | unif〉 is a subset of the instances of any

model captured by the notation 〈∗ | ∗ | ∗〉, all we need to do is to prove that the

CCDM problem is NP-hard under the model 〈const | const | unif〉, when there

are only two shifts, and each application calls at most two databases. We will

do that via a polynomial reduction from the classical MINIMUM-BISECTION

problem, whose definition is given below.

Definition 1 (MINIMUM-BISECTION). Given an undirected graph G =

(V,E), partition V into two subsets V1 and V2 of equal size such that the number

of edges with one endpoint in V1 and one endpoint in V2 are minimized. It is

assumed |V | is even.

For a given instance G = (V,E) of the MINIMUM-BISECTION problem, we

construct the corresponding CCDM instance in model 〈const | const | unif〉 as

follows:

– For every vertex i of the graph of the MINIMUM-BISECTION instance, the

CCDM instance has a corresponding database Bi with unit size, i.e., wi = 1,

– For every edge e = (i, j) of the graph of the MINIMUM-BISECTION in-

stance, the CCDM instance has a corresponding application Ae with unit

application testing cost(ce = 1) that calls databases Bi and Bj ,

– The CCDM instance has only two shifts and the size of each shift is |V |2 .

Notice that the constructed CCDM instance has |V | databases and |E| ap-

plications such that each application calls exactly two databases. In any feasible

8 K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

solution to the CCDM instance exactly k = |V |
2 databases are assigned to the

first shift and the remaining k databases are assigned to the second shift. If both

of the databases called by an application Ai are assigned to the same shift then

application Ai needs to be tested only once (xi = 1) in the database migration

process, and it needs to be tested twice (xi = 2) otherwise. Let d denote the

number of applications that calls one database from each shift, and thus needs to

be tested twice. Then, the total application testing cost of the CCDM instance

is |V |+d, since d of the |E| applications are to be tested twice whereas all other

applications are to be tested only once. Since |V | is fixed, the optimal solution

to the CCDM instance is the one that minimizes d.

Given a solution to constructed CCDM instance, consider the following so-

lution to the given MINIMUM-BISECTION instance:

– If database Bi of the constructed CCDM instance is assigned to the first

shift, then assign vertex i of the MINIMUM-BISECTION instance to V1,

– If database Bi of the constructed CCDM instance is assigned to the second

shift, then assign vertex i of the MINIMUM-BISECTION instance to V2.

Notice that an edge e = (i, j) of the given MINIMUM-BISECTION instance

has one endpoint in V1 and one endpoint in V2 if and only if the databases

Bi and Bj of the CCDM instance are assigned to different shifts and thus the

application Ae is to be tested twice. Therefore, the number of edges with one

endpoint in V1 and one endpoint in V2 of the given MINIMUM-BISECTION

instance is equal to the number of applications that needs to be tested twice in

the constructed CCDM instance, which is denoted by d. ut

4 Fixed Parameter Intractability of the CCDM Problem

In this section, we study the fixed parameter tractability of the CCDM prob-

lem for various parameters of the problem such as the number of applications,

the number of shifts, the maximum number of databases that is called by an

application, and the maximum number of applications that calls a database.

Notice that Theorem 1 establishes fixed parameter intractability for all 12

models of the CCDM problem, where the parameter is the number of shifts, or

the maximum number of databases that is called by an application. In the rest

of the section, we prove intractability results for the remaining parameters.

Theorem 2 establishes fixed parameter intractability for all 6 models of the

CCDM problem captured by the notation 〈∗ | arb | ∗〉, when the parameter is

Minimization of Testing Costs in Capacity-Constrained Database Migration 9

the number of applications. Theorem 3 establishes fixed parameter intractability

for all 6 models of the CCDM problem captured by the notation 〈∗ | ∗ | non−
unif〉, when the parameter is the maximum number of applications that calls a

database.

Theorem 2. The CCDM problem is NP-hard under the 6 models captured by

the notation 〈∗ | arb | ∗〉, even when the number of applications |A| is 2.

Proof. Since the set of instances of the database migration problem under the

model 〈const | arb | unif〉 is a subset of the instances of any model captured by

the notation 〈∗ | arb | ∗〉, all we need to do is to prove that the CCDM problem

is NP-hard under the model 〈const | arb | unif〉, when |A| is 2. We will do

that via a polynomial reduction from the classical PARTITION problem, whose

definition is given below.

Definition 2 (PARTITION). Given a multiset S of positive integers, is S

can be partitioned into two subsets S1 and S2 such that the sum of the numbers

in S1 equals the sum of the numbers in S2?

Given a PARTITION instance S = {s1, s2, . . . , sn}, we construct a corre-

sponding CCDM instance under the model 〈const | arb | unif〉 with 2 applica-

tions as follows:

– For every integer si in the multiset S of the PARTITION instance, the

CCDM instance has a corresponding database Bi with size si, i.e., wi = si,

– The CCDM instance has two applications A1 and A2 with unit testing costs,

each of which calls all of the n databases,

– The CCDM instance has sufficiently many shifts and the size of each shift

is
∑n

i=1 si
2 .

Since both of the applications of the CCDM instance calls all the databases,

the total application testing cost is two times the number of shifts with at least

one database assigned. Thus, the CCDM instance has a solution with total ap-

plication testing cost of 4 if the databases can be clustered into two shifts. The

theorem holds since the databases can be clustered into two shifts if and only if

the answer to the PARTITION instance is yes. ut

Theorem 3. CCDM is strongly NP-hard for the 6 models captured by the no-

tation 〈∗ | ∗ | non− unif〉, even if each database is called by two applications.

10 K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

Proof. Since the set of instances of the capacity-constrained database migration

problem under the model 〈const | const | non − unif〉 is a subset of the in-

stances of any model captured by the notation 〈∗ | ∗ | non − unif〉, all we

need to do is to prove that the CCDM problem is NP-hard under the model

〈const | const | non−unif〉, when each database is called by at most two appli-

cations. We will do that via a polynomial reduction from the classical CLIQUE

problem, whose definition is given below.

Definition 3 (CLIQUE). Given a graph G = (V,E) and an integer k, is there

a fully connected subgraph G′ ⊆ G consisting of k vertices?

Given a CLIQUE instance 〈G = (V,E), k〉, we construct a corresponding

CCDM instance under the model 〈const | const | non− unif〉 as follows:

– For every vertex vi of the CLIQUE instance, the CCDM instance has a

corresponding application Ai with unit application testing cost, i.e., ci = 1

– For every edge e of the CLIQUE instance, the CCDM instance has a corre-

sponding database Be with unit size, i.e., wi = 1,

– For every edge e = (vi, vj) of the CLIQUE instance, the applications Ai and

Aj of the CCDM instance calls database Be. Notice that each database is

called by exactly 2 applications.

– The CCDM instance has |E|−k(k−1)/2+1 shifts. The size of the first shift

is k(k− 1)/2, and the size of each of the remaining |E| − k(k− 1)/2 shifts is

1.

We next show that there is a k-clique in G if and only if our CCDM instance

yields a solution with a total application testing cost of 2|E| − k2 + 2k.

Let c∗ denote the cost of the minimum-cost solution for our CCDM instance.

Since each database is connected to 2 applications, we have c∗ > 2(|E| − k(k −
1)/2) = 2|E|−k2+k. This follows from the fact that each database placed in one

of the |E| − k(k− 1)/2 shifts with capacity of 1 must have both of its connected

applications tested, leading to a test cost of 2(|E| − k(k− 1)/2) = 2|E| − k2 + k.

For the shift with capacity k(k−1)/2, we have a total application test cost of k if

and only if the vertices in G corresponding to the databases in this shift induce

a clique of size k. This follows trivially from the fact that the number of edges in

a k-clique is k(k−1)/2. Thus, c∗ ≥ 2|E|−k2 + 2k and c∗ = 2|E|−k2 + 2k if and

only if G has a clique of size k. Since all values in the reduction are polynomially

bounded, it follows that this problem is NP-hard in the strong sense. ut

Minimization of Testing Costs in Capacity-Constrained Database Migration 11

5 Approximation Algorithm for a Special Case of the

CCDM Problem

In this section, we present Algorithm 5.1 for the CCDM problem under the model

〈const | const | unif〉, when there are only two shifts and each application calls

at most two databases. Algorithm 5.1 is a randomized (3
2 + ε)−approximation

algorithm for any given ε > 0 by Theorem 4.

FunctionMin-Test-Cost(〈c,w,D, l〉, ε)

1: if n < 1 + 1
2ε

then

2: Find optimal solution by brute force

3: else

4: Select half of the databases by simple random sampling without replacement

5: Assign the selected databases to the first shift

6: Assign the remaining databases to the second shift

7: end if

Algorithm 5.1: Randomized (3
2 + ε)−approximation algorithm for CCDM prob-

lem under the model 〈const | const | unif〉, when there are only two shifts and
each application calls at most two databases.

Theorem 4. For any given ε > 0, Algorithm 5.1 returns a solution whose total

application testing cost is at most (3
2 + ε) times that of the optimum, for the

CCDM problem under the model 〈const | const | unif〉, when there are only two

shifts and each application calls at most two databases.

Proof. Since Algorithm 5.1 finds the optimal solution in polynomial time by

brute force if n < 1 + 1
2ε , in the rest of the proof, we will assume the contrary,

i.e., ε ≥ 1
2n−2 .

Since there are only two shifts, each application Ai is to be tested only once

or twice. If both of the databases Ai calls are assigned to the same shift or if it

calls only one database it will be tested once, otherwise it will be tested twice.

Let C denote the application testing cost of any application. Then the total

application testing cost is C times the total number of application tests. Note

that m · C is a lower bound for the cost of the optimal solution to this CCDM

instance since each application is to be tested at least once.

Let Xi be a random variable denoting the number of times application Ai

is to be tested with respect to the migration schedule generated by Algorithm

12 K. Subramani1, Bugra Caskurlu2, Alvaro Velasquez3

5.1. The total cost of the migration schedule generated by Algorithm 5.1 is

then C ·
∑m
i=1Xi. To complete the proof all we need to do is to show that

E(
∑m
i=1Xi) ≤

(
3
2 + ε

)
·m. Since E(

∑m
i=1Xi) =

∑m
i=1 E(Xi) due to linearity of

expectations, it suffices to show that E(Xi) ≤
(
3
2 + ε

)
for any i. If Ai calls only

one database then this inequality is trivially satisfied since E(Xi) = 1. So, we

focus on applications that calls exactly two databases.

Let Ai be an application that calls databases Bj and Bk. Let εj and εk denote

the events that databases Bj and Bk are assigned to the first shift respectively.

E(Xi) = 1 ·Pr((εj ∩ εk) ∪ (εj ∩ εk)) + 2 ·Pr((εj ∩ εk) ∪ (εj ∩ εk))

= Pr(εj ∩ εk) + Pr(εj ∩ εk) + 2 ·Pr(εj ∩ εk) + 2 ·Pr(εj ∩ εk)

= Pr(εj)Pr(εk|εj) + Pr(εj)Pr(εk|εj) + 2 (Pr(εj)Pr(εk|εj) + Pr(εj)Pr(εk|εj))

=
1

2
·
n
2 − 1

n− 1
+

1

2
·
n
2 − 1

n− 1
+ 2

(
1

2
·

n
2

n− 1
+

1

2
·

n
2

n− 1

)
=

3

2
+

1

2n− 2

≤ 3

2
+ ε as desired.

6 Conclusion and Future Research Directions

This paper presented a general framework that is suitable for modelling the

database migration requirements of a variety of enterprises. We showed that the

CCDM problem is NP-hard for all the models, even under the very restricted

scenario, where there are only 2 shifts and each application is calling at most 2

databases. We also studied the parameterized complexity of the CCDM problem

for four relevant parameters and presented fixed parameter intractability results

for all of them. We have also presented a (3
2 + ε)-approximation algorithm for

an interesting but a quite restricted special case of the CCDM problem. Ev-

ery model of the CCDM problem is an interesting combinatorial optimization

problem by itself, and it would be interesting to know for which models of the

CCDM problem there are low factor approximation algorithms, and for which

models there are not. From our perspective, the following avenues of research

are interesting:

1. Derandomizing the randomized approximation algorithm.

2. Designing approximation algorithms and/or obtaining inapproximability re-

sults for all the models of the CCDM problem.

Minimization of Testing Costs in Capacity-Constrained Database Migration 13

References

1. YV Ravikumar, KM Krishnakumar, and Nassyam Basha. Oracle database migra-

tion. In Oracle Database Upgrade and Migration Methods, pages 213–277. Springer,

2017.

2. Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro Orso,

Maikel Pennings, Saurabh Sinha, S Alexander Spoon, and Ashish Gujarathi. Re-

gression test selection for java software. In ACM Sigplan Notices, volume 36, pages

312–326. ACM, 2001.

3. Silvia Regina Vergilio, José Carlos Maldonado, Mario Jino, and Inali Wisniewski

Soares. Constraint based structural testing criteria. Journal of Systems and Soft-

ware, 79(6):756–771, 2006.

4. W Eric Wong, Joseph R Horgan, Aditya P Mathur, and Alberto Pasquini. Test

set size minimization and fault detection effectiveness: A case study in a space

application. Journal of Systems and Software, 48(2):79–89, 1999.

5. Aaron J Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr:

live migration in shared nothing databases for elastic cloud platforms. In Proceed-

ings of the 2011 ACM SIGMOD International Conference on Management of data,

pages 301–312. ACM, 2011.

6. Steve Lohr. The age of big data. New York Times, 11(2012), 2012.

7. Mehdi Bahrami and Mukesh Singhal. The role of cloud computing architecture

in big data. In Information granularity, big data, and computational intelligence,

pages 275–295. Springer, 2015.

8. Dimas C Nascimento, Carlos Eduardo Pires, and Demetrio Mestre. Data quality

monitoring of cloud databases based on data quality slas. In Big-Data Analytics

and Cloud Computing, pages 3–20. Springer, 2015.

9. Ping Lu, Liang Zhang, Xiahe Liu, Jingjing Yao, and Zuqing Zhu. Highly efficient

data migration and backup for big data applications in elastic optical inter-data-

center networks. IEEE Network, 29(5):36–42, 2015.

10. Xiaonian Wu, Mengqing Deng, Runlian Zhang, Bing Zeng, and Shengyuan Zhou.

A task scheduling algorithm based on qos-driven in cloud computing. Procedia

Computer Science, 17:1162–1169, 2013.

11. Sangameshwar Patil, Sasanka Roy, John Augustine, Amanda Redlich, Sachin

Lodha, Harrick M Vin, Anand Deshpande, Mangesh Gharote, and Ankit Mehro-

tra. Minimizing testing overheads in database migration lifecycle. In COMAD,

page 191, 2010.

	Minimization of Testing Costs in Capacity-Constrained Database Migration

